1

I found a problem on this link: https://artofproblemsolving.com/community/c6h260824p1418804

For $a,b,c > 0$. Prove that: $$\sum\sqrt{\dfrac{a^4+kb^2c^2}{a^2+kbc}} \geq a+b+c,\forall k \in[0;12]$$

WLOG, suppose $abc=1$ then: $$LHS=\sum\sqrt{\dfrac{a^6+k}{a(a^3+k)}}$$

And I use tangent line method to prove:

$$\sqrt{\dfrac{x^6+k}{x(x^3+k)}} \geq \dfrac{2+k-k^2}{2(k+1)^2}(x-1)+1$$

which is equivalent to: $$-\frac{\left(x-1\right)^{2} \left(-3 k \,x^{4}-12 k \,x^{3}-12 x^{4}+k^{2} x-12 k \,x^{2}-12 x^{3}-4 k^{2}-16 k x-12 x^{2}-8 k-8 x-4\right) k}{4 \left(k+1\right)^{2} x \left(x^{3}+k\right)} \geq 0$$ by Maple.

Can anyone help me with a more human solution please by Holder I think. Thank you a lots.

River Li
  • 49,125

1 Answers1

1

A proof for $0 \le k \le 5$.

Assume that $0 \le k \le 5$.

We need to prove that, for all $a, b, c > 0$ with $abc = 1$, $$\sum_{\mathrm{cyc}} \left(\sqrt{\frac{a^6 + k}{a(a^3+k)}} - a\right) \ge 0. \tag{1}$$

Using $\ln a + \ln b + \ln c = \ln(abc) = 0$, (1) is written as $$\sum_{\mathrm{cyc}} \left(\sqrt{\frac{a^6 + k}{a(a^3+k)}} - a + \frac{3k}{2k+2}\ln a\right) \ge 0. \tag{2}$$

We can prove that, for all $x > 0$, $$\sqrt{\frac{x^6 + k}{x(x^3+k)}} - x + \frac{3k}{2k+2}\ln x \ge 0. \tag{3}$$ (The proof of (3) is given at the end.)

Thus, (2) is true.

$\phantom{2}$

Remark. For $5 < k \le 12$, Perhaps it is difficult to tackle this inequality by the Olympiad style approaches. We may use the method of Lagrange Multipliers. The approach is similar to my answer here.

Let $$f(x) := \sqrt{\frac{x^6 + k}{x(x^3+k)}} - x.$$ We need to prove that, for all $a, b, c > 0$ with $abc = 1$, $$f(a) + f(b) + f(c) \ge 0.$$

Consider the minimum of $f(a) + f(b) + f(c)$ subject to $a, b, c > 0$ and $abc = 1$. It is easy to prove that the minimum occurs (finite), and furthermore, the minimizer lies in $a, b, c \in [0, M]$ for some $M > 0$.

The method of Lagrange Multipliers yields the system of equations \begin{align*} f'(a) &= \lambda bc, \\ f'(b) &= \lambda ca, \\ f'(c) &= \lambda ab,\\ abc &= 1.\tag{1} \end{align*} Clearly, we have $af'(a) = bf'(b) = cf'(c) = \lambda$.

I think we can try to prove that if $a, b, c > 0$ and $\lambda$ satisfy the system of equations (1), then $a = b = c = 1$.

$\phantom{2}$


Proof of (3).

We have $$\sqrt{\frac{x^6 + k}{x(x^3+k)}} - x = \frac{\frac{x^6 + k}{x(x^3+k)} - x^2}{\sqrt{\frac{x^6 + k}{x(x^3+k)}} + x} = \frac{k(1-x)(x^2 + x + 1)}{x(x^3 + k)\left(\sqrt{\frac{x^6 + k}{x(x^3+k)}} + x\right)}$$ $$\ge \frac{k(1-x)(x^2 + x + 1)}{x(x^3 + k)\left(\sqrt{\frac{1}{x}} + x\right)}$$ where we use $\frac{x^6 + k}{x^3+k} \le 1$ for all $0 < x \le 1$, and $\frac{x^6 + k}{x^3+k} > 1$ for all $x > 1$.

It suffices to prove that $$\frac{k(1-x)(x^2 + x + 1)}{x(x^3 + k)\left(\sqrt{\frac{1}{x}} + x\right)} + \frac{3k}{2k+2} \ln x \ge 0,$$ or $$\frac{x^2 + x + 1}{x\left(\sqrt{\frac{1}{x}} + x\right)}\cdot (1-x)\frac{2k + 2}{x^3 + k} + 3 \ln x \ge 0,$$ or (using $(1-x)\frac{2k+2}{x^3 + k} \ge (1-x)\frac{2\cdot 5+2}{x^3 + 5}$ for all $x > 0$) $$\frac{x^2 + x + 1}{x\left(\sqrt{\frac{1}{x}} + x\right)}\cdot (1-x)\frac{2\cdot 5 + 2}{x^3 + 5} + 3 \ln x \ge 0.$$

If $x \ge 1$, using $\ln u \ge \frac{2(u-1)}{u+1}$ for all $u\ge 1$ (easy), it suffices to prove that $$\frac{x^2 + x + 1}{x\left(\sqrt{\frac{1}{x}} + x\right)}\cdot (1-x)\frac{2\cdot 5 + 2}{x^3 + 5} + 3 \cdot \frac{2(x-1)}{x+1} \ge 0, $$ which is true.

If $0 < x < 1$, using $\ln x \ge \frac{1}{\sqrt{x}}\frac{(x-1)(17x^2 + 206x + 17)}{3(9x^2 + 62x + 9)}$ for all $0 < x < 1$ (taking derivative), it suffices to prove that $$\frac{x^2 + x + 1}{x\left(\sqrt{\frac{1}{x}} + x\right)}\cdot (1-x)\frac{2\cdot 5 + 2}{x^3 + 5} + 3 \cdot \frac{1}{\sqrt{x}}\frac{(x-1)(17x^2 + 206x + 17)}{3(9x^2 + 62x + 9)} \ge 0, $$ which is true.

We are done.

River Li
  • 49,125