Consider,
$$I=\int\frac{dx}{\sin x+\cos x+\tan x+\cot x+\csc x+\sec x}$$
Substitute $x-\frac{\pi}{4}=t$
\[
\sin\left(t + \frac{\pi}{4}\right) = \frac{\sin t + \cos t}{\sqrt{2}}, \quad
\cos\left(t + \frac{\pi}{4}\right) = \frac{\cos t - \sin t}{\sqrt{2}}
\]
\[
\tan\left(t + \frac{\pi}{4}\right) = \frac{\tan t + 1}{1 - \tan t}, \quad
\cot\left(t + \frac{\pi}{4}\right) = \frac{\cot t + 1}{1 - \cot t}
\]
\[
\sec\left(t + \frac{\pi}{4}\right) = \frac{1}{\cos\left(t + \frac{\pi}{4}\right)} = \frac{\sqrt{2}}{\cos t - \sin t}
\]
\[
\csc\left(t + \frac{\pi}{4}\right) = \frac{1}{\sin\left(t + \frac{\pi}{4}\right)} = \frac{\sqrt{2}}{\sin t + \cos t}
\]
After a lot of simplification,
$$=\int \frac{\sqrt2 \cos t -1}{2\cos^2 t-\sqrt2 \cos t+2}\,dt$$
Substitute $tan \frac{t}2=u\implies \cos t = \frac{1-t^2}{1+t^2}, \frac{2}{1+t^2}\,dt=\,du$
$$=-\frac{2+3\sqrt2}{7}\int \frac{u^2-(3-2\sqrt2)}{u^2+\left(\frac{10-4\sqrt2}{7}\right)}\,du$$
For ease of notations, $a=3-2\sqrt2$ and $b=\frac{10-4\sqrt2}{7}$
$$=-\frac{2+3\sqrt2}{7}\int \frac{u^2-a}{u^2+b}\,du$$
$$=-\frac{2+3\sqrt2}{7}\color{red}{\int \frac{u^2}{u^2+b}\,du}+a\cdot\frac{2+3\sqrt2}{7}\color{red}{\int \frac{1}{u^2+b}\,du}$$
These are two standard integrals,
The first integral evaluates to,
$=\frac{1}{4\sqrt{b}\sqrt{2\sqrt{b}}}\ln\left|\frac{\tan^2\left(\frac{x}{2}-\frac{\pi}{8}\right)+\sqrt{b}-\sqrt{2\sqrt{b}}\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)}{\tan^2\left(\frac{x}{2}-\frac{\pi}{8}\right)+\sqrt{b}+\sqrt{2\sqrt{b}}\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)}\right|+\frac{1}{2\sqrt{b}\sqrt{2\sqrt{b}}}\tan^{-1}\left(\frac{\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)+\sqrt{b}-\sqrt{2\sqrt{b}}\cot\left(\frac{x}{2}-\frac{\pi}{8}\right)}{\sqrt{2\sqrt{b}}}\right)$
The second integral evaluates to,
$=-\frac{1}{4\sqrt{b}\sqrt{2\sqrt{b}}}\ln\left|\frac{\tan^2\left(\frac{x}{2}-\frac{\pi}{8}\right)+\sqrt{b}-\sqrt{2\sqrt{b}}\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)}{\tan^2\left(\frac{x}{2}-\frac{\pi}{8}\right)+\sqrt{b}+\sqrt{2\sqrt{b}}\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)}\right|+\frac{1}{2\sqrt{b}\sqrt{2\sqrt{b}}}\tan^{-1}\left(\frac{\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)-\sqrt{b}\cot\left(\frac{x}{2}-\frac{\pi}{8}\right)}{\sqrt{2\sqrt{b}}}\right)$
So combining these results,
$I=-\frac{\sqrt{2}+1}{7\sqrt{b}\sqrt{2\sqrt{b}}}\ln\sqrt{\left|\frac{\tan^2\left(\frac{x}{2}-\frac{\pi}{8}\right)+\sqrt{b}-\sqrt{2\sqrt{b}}\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)}{\tan^2\left(\frac{x}{2}-\frac{\pi}{8}\right)+\sqrt{b}+\sqrt{2\sqrt{b}}\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)}\right|}+\frac{2-\sqrt{2}}{7\sqrt{b}\sqrt{2\sqrt{b}}}\tan^{-1}\left(\frac{\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)+\sqrt{b}-\sqrt{2\sqrt{b}}\cot\left(\frac{x}{2}-\frac{\pi}{8}\right)}{\sqrt{2\sqrt{b}}}\right)$