Evaluate this integration : $$\Omega = \int^1_0 \frac{\ln^3(1-x^2)}{1+x}dx$$ My attempt : \begin{align*} \Omega & =\int^1_0 \frac{\ln^3(1-x^2)}{1+x}dx\overset{t=\frac{1-x}{1+x}}{=}\int^1_0\frac{\ln^3\left({\frac{4t}{(t+1)^2}}\right)}{t+1}dt \\ &= \underbrace{\int^1_0\frac{\ln^3(4t)}{t+1}dt}_{I_1} -8\underbrace{\int^1_0\frac{\ln^3(1+t)}{1+t}dt}_{I_2} -6\underbrace{\int^1_0 \frac{\ln^2(4t)\ln(t+1)}{t+1}dt}_{I_3}+12\underbrace{\int^1_0\frac{\ln(4t)\ln(1+t)}{t+1}dt}_{I_4} \end{align*}
$$I_2 = \int^1_0\frac{\ln^3(1+t)}{1+t}dt = \frac{1}{4}\ln^4(2)$$ \begin{align*} I_1 = \int^1_0\frac{\ln^3(4t)}{t+1}dt &= \ln^3(4)\int^1_0\frac{1}{t+1}dt +\int^1_0\frac{\ln^3(t)}{t+1}dt + 3\ln^2(4)\int^1_0\frac{\ln(t)}{t+1}dt+3\ln(4)\int^1_0\frac{\ln^2(t)}{t+1}dt \\ &= \ln^3(4)\ln(2) -\frac{7}{120}\pi^4-\frac{\ln^2(4)}{4}\pi^2+\frac{9}{2}\zeta(3)\ln(4)\\&= 8\ln^4(2)-\frac{7}{120}\pi^4-\pi^2\ln^2(2)+9\zeta(3)\ln(2) \end{align*}
\begin{align*} I_3 = \int^1_0 \frac{\ln^2(4t)\ln(t+1)}{t+1}dt &= \ln^2(4)\int^1_0\frac{\ln(t+1)}{t+1}dt+\int^1_0 \frac{\ln^2(t)\ln(t+1)}{t+1}dt+2\ln(4)\int^1_0 \frac{\ln(t)\ln(t+1)}{t+1}dt\\ &= 2\ln^4(2) + \int^1_0 \frac{\ln^2(t)\ln(t+1)}{t+1}dt +2\ln(4)\int^1_0 \frac{\ln(t)\ln(t+1)}{t+1}dt \end{align*}
\begin{align*} I_4 &= \int^1_0\frac{\ln(4t)\ln(1+t)}{t+1}dt = \ln(4)\int^1_0 \frac{\ln(1+t)}{1+t}dt+\int^1_0\frac{\ln(1+t)\ln(t)}{1+t}dt\\&= \ln^3(2) +\int^1_0\frac{\ln(1+t)\ln(t)}{1+t}dt \end{align*} My question : Is there a way to evaluate these two integrals?
$$\int^1_0 \frac{\ln(t)\ln(1+t)}{1+t}dt $$ $$\int^1_0 \frac{\ln^2(t)\ln(1+t)}{1+t}dt$$