Let $V$ be a finite-dimensional vector space (over some ground field $F$ of characteristic $0$), let $k$ be a nonnegative integer, and let $T^kV = V^{\otimes k}$ be the $k$-fold tensor product (over $F$) of $V$ with itself.
- Let $S_k$ denote the symmetric group on $k$ elements, and let $\epsilon_+,\epsilon_- : S_k \rightarrow \{+1,-1\}$ be the two homomorphisms given by $\epsilon_+(\sigma) = 1$ and $\epsilon_-(\sigma) = \mathrm{sgn}(\sigma)$ for $\sigma \in S_k$.
- Let $\rho_+,\rho_- : S_k \rightarrow \mathrm{GL}_{F}(T^k V)$ be the "symmetric" and "antisymmetric" actions, given on e.g. a homogeneous element $w:= v_1 \otimes \cdots \otimes v_k \in T^k V$ by $\rho_{\pm}(\sigma)(w) = \epsilon_{\pm}(\sigma)\, v_{\sigma(1)}\otimes\cdots\otimes v_{\sigma(k)}$.
- We define $P_{\pm} := \frac{1}{k!} \sum_{\sigma \in S_k} \rho_{\pm}(\sigma) \in \mathrm{End}_F(T^k V)$ and $I_{\pm} := \{ x \in T^k V : \forall \sigma \in S_k , \rho_{\pm}(\sigma)(x) = x\}$.
Intuitively we think of $P_+,P_-$ as "symmetrization and antisymmetrization" operators, and $I_+,I_-$ as the "symmetric and antisymmetric" (contravariant degree $k$) tensors on $V$.
So far, if I'm not mistaken, I've shown that $\mathrm{ker}(P_+) \supseteq I_-$ and $\mathrm{ker}(P_-) \supseteq I_+$. Also $I_{\pm}$ equals the fixed-point space (eigenspace for eigenvalue +1) of $P_{\pm}$.
However, I am wondering whether $\mathrm{ker}(P_{+}) \subseteq I_{-}$ and $\mathrm{ker}(P_{-}) \subseteq I_{+}$ hold in general? I'm not sure how to approach solving this question; would anyone have a suggestion?