The left pseudoinverse of $(A^TA)^{-1}A^T$ solves the problem of $\text{min} ||b-Ax||^2$. i.e. $x=(A^TA)^{-1}A^Tb$ is the solution to above problem.
And there is a well-know property that if we add a precision matrix $\Omega^{-1}$ as the weights,
${\hat{\boldsymbol x}} = \left( \mathbf{A}^{\mathrm{T}} \mathbf{\Omega}^{-1} \mathbf{A} \right)^{-1} \mathbf{A}^{ \mathrm{T}}\mathbf{\Omega}^{-1}\mathbf{b}$
is the best linear unbiased estimator for $x$. Reference: https://en.wikipedia.org/wiki/Generalized_least_squares
The right pseudoinverse $A^T(AA^T)^{-1}$ solves the problem of $\text{min} ||x||^2$ subject to $Ax=b$. i.e the solution is $x = A^T(AA^T)^{-1}b$.
Question: for right pseudoinverse, is there a property analogous to above GLS and left pseudoinverse, where adding a weight of some sort, would give me a best linear unbiased estimator?