I would appreciate if you could help me to find the following integral:
$$f(u)= \int_{-\infty }^{\infty} {{\rm e}^{{\dfrac {t \left( -t{\mu_{{x}}}^{2}{\sigma_{{y}}}^{2}-t{ \mu_{{y}}}^{2}{\sigma_{{x}}}^{2}+2\,i\mu_{{x}}\mu_{{y}} \right) }{2({t}^ {2}{\sigma_{{x}}}^{2}{\sigma_{{y}}}^{2}+1)}}}}{\frac {e^{-itu}}{\sqrt {{t}^{2} {\sigma_{{x}}}^{2}{\sigma_{{y}}}^{2}+1}}} \;dt$$