I am learning how to use Feynman's trick to solve integartion. I want to solve well known $\int _ {-\infty}^{\infty} e^{-x^2}dx$. I have seen the question Integrating $\int^{\infty}_0 e^{-x^2}\,dx$ using Feynman's parametrization trick but found nothing like mine.
I my attempt:
$$I(\alpha):= \int _ {-\infty}^{\infty} e^{-(x + \alpha)^2}dx\\ I'(\alpha)=\int _ {-\infty}^{\infty} e^{-(x + \alpha)^2} 2(-x-\alpha) dx\\ =-\int _ {x=-\infty}^{x=\infty} 2te^{-t^2}dt \quad [\text{where, } t = (x+\alpha)]\\ =e^{-t^2} \Biggr|_{x=-\infty}^{x=\infty}=e^{-(x+\alpha)^2}\Biggr|_{x=-\infty}^{x=\infty}=0$$
Hence, $$I(\alpha) = c \,\,\,\,(\text{constant})$$
Now, $$\lim_{\alpha \to \infty}I(\alpha) = 0 \implies c =0$$
Where I did mistake or we can't take $I(\alpha)$ like that please help. Thanks.