"If I pick $\delta = 1$"
Why? Why pick $\delta = 1$. Why not just leave $\delta$ equaling $\delta$?
Then you get $2-\delta < x < 2+\delta$ and if we assume $2-\delta > 0$ (So we do restrict $0 < \delta < 2$) we get $\log(2-\delta) < \log x < \log(2+\delta)$.
Then your step of dividing by $2$ becomes $\log(\frac {2-\delta}2) < \log\frac x2 < \log(\frac {2+\delta}2)$ which is useful even without specific values.
and so
$\log(1-\frac \delta 2) < \log x - \log 2 < \log(1+\frac \delta 2)$.
Now we know $\log (1-\frac \delta 2) < 0$ and $\log(1+\frac \delta 2) > 0$ so if we can find a $\delta$ that would make
$-\epsilon \le \log(1-\frac \delta 2) < \log x-\log 2 < \log(1+\frac \delta 2)\le \epsilon$
we'd be done.
For $-\epsilon < \log(1-\frac \delta 2) < 0$ we need $e^{-\epsilon} < 1-\frac \delta 2$ or in other words: $\delta < 2(1-e^{-\epsilon})$.
And for $\log(1+\frac \delta 2) < \epsilon$ we need $1+\frac \delta 2 < e^{\epsilon}$ or $\delta < 2(e^\epsilon -1)$.
So as long as we pick $\delta$ so that $0 < \delta \le \min(2(1-e^{-\epsilon}), 2(e^\epsilon -1))$, then picking $x$ so that $|x-2| < \delta\le \min(2(1-e^{-\epsilon}), 2(e^\epsilon -1))$ we will have:
$-\epsilon \le \log(1-\frac \delta 2) < \log x-\log 2 < \log(1+\frac \delta 2)< \epsilon$ and so
$|\log x-\log 2| < \epsilon$