Question (courtesy of @BenSteffan): What is the homotopy set $[\mathbb{R}P^{n+1},S^n],\,n\ge 3$?
[This entire post takes place in the pointed category.] Note that there is, for any $n\ge1$, a cofiber sequence $$S^n\rightarrow\mathbb{R}P^n\rightarrow\mathbb{R}P^{n+1}\rightarrow S^{n+1}\rightarrow\Sigma\mathbb{R}P^n\rightarrow\dotsc.$$ This induces an exact sequence of pointed sets $$\dotsc\rightarrow[\Sigma\mathbb{R}P^n,S^2]\rightarrow[S^{n+1},S^n]\rightarrow[\mathbb{R}P^{n+1},S^n]\rightarrow[\mathbb{R}P^n,S^n]\rightarrow[S^n,S^n],$$ where furthermore the group $[S^{n+1},S^n]=\pi_{n+1}(S^n)=\mathbb{Z}/2\mathbb{Z}$ acts transitively on the fibers of the restriction map $[\mathbb{R}P^{n+1},S^n]\rightarrow[\mathbb{R}P^n,S^n]$. Now, Hopf's Theorem states that $[-,S^n]$ corepresents $H^n(-;\mathbb{Z})$ on $\le n$-dimensional CW-complexes, so the latter map is identified with the pullback $H^n(\mathbb{R}P^n)\rightarrow H^n(S^n)=\mathbb{Z}$. Now, consider two cases:
If $n$ is odd, then $\mathbb{R}P^n$ is orientable, so the final map is $2\cdot\colon\mathbb{Z}\rightarrow\mathbb{Z}$ (since $S^n\rightarrow\mathbb{R}P^n$ is a double cover). In particular, this map is injective, so exactness yields that we have a surjection $\pi_{n+1}(S^n)\twoheadrightarrow[\mathbb{R}P^{n+1},S^n]$, so the homotopy set in question has $1$ or $2$ elements depending on whether the composite $\mathbb{R}P^{n+1}\rightarrow S^{n+1}\rightarrow S^n$ of the map collapsing $\mathbb{R}P^n$ and the $(n-2)$-fold suspension of the Hopf map $\eta\colon S^3\rightarrow S^2$ is non-trivial. It is not clear to me whether it is.
If $n$ is even, $\mathbb{R}P^n$ is non-orientable, so the final map is the null map $\mathbb{Z}/2\mathbb{Z}\rightarrow\mathbb{Z}$. Thus, exactness yields that the restriction map $[\mathbb{R}P^{n+1},S^n]\twoheadrightarrow[\mathbb{R}P^n,S^n]=\mathbb{Z}/2\mathbb{Z}$ is surjective. Furthermore, $\pi_{n+1}(S^n)=\mathbb{Z}/2\mathbb{Z}$ acts transitively on its fibers, so the homotopy set in question has between $2$ and $4$ elements.
From this point, I cannot make any more progress. It's worth noting that the analogous question for $n=2$ can also be posed, in which case I know the answer. Namely, the projection $S^3\rightarrow\mathbb{R}P^3$ induces a bijection $[\mathbb{R}P^3,S^2]\stackrel{\sim}{\rightarrow}[S^2,S^2]=\mathbb{Z}$, which can be shown by constructing enough elements and using the above exact sequence. However, such an approach seems less feasible for $n\ge3$ since the analogous map $[\mathbb{R}P^{n+1},S^n]\rightarrow[S^{n+1},S^n]=\pi_{n+1}(S^n)=\mathbb{Z}/2\mathbb{Z}$ now fails to detect the image of $[S^{n+1},S^n]\rightarrow[\mathbb{R}P^{n+1},S^n]$ since the composite $S^{n+1}\rightarrow\mathbb{R}P^{n+1}\rightarrow S^{n+1}$ is a degree $2$ map and $\mathbb{Z}/2\mathbb{Z}$ is $2$-torsion.