Let $H$ be an infinite-dimensional Hilbert space, and $(H_n)$ a sequence of finite-dimensional subspaces. I would like to show that $(H_n)$ converges.
For this, I managed to show that $A \subseteq \liminf_{n\rightarrow \infty} H_n = \bigcup_{n=0}^\infty \bigcap_{k=n}^\infty H_k \subseteq H$, where $A$ is dense in $H$, and similarly that $A\subseteq \limsup_{n\rightarrow \infty} H_n =\bigcap_{n=0}^\infty \bigcup_{k=n}^\infty H_k \subseteq H$.
Technically, to show that the limit of $(H_n)$ exists, I would need to show that $\liminf_{n\rightarrow \infty} H_n=\limsup_{n\rightarrow \infty} H_n$ but I only have $\overline{A}=\overline{\liminf_{n\rightarrow \infty} H_n}=\overline{\limsup_{n\rightarrow \infty} H_n}=H$. Is there a way to still derive my result?