-2

I was learning series, double summation properties when I came across this question on a forum. (Unanswered). I tried to solve it, however, I'm unable to solve it as.

  1. The summation variables seems to be interrelated, or atleast I'm unable to seperate them easily.
  2. The two summation variables also looks to have different ranges, $j$ going from $1$ to $n$, however, $i$ going from $0$ to $\infty$.

How to approach and solve double summation series such as $$\sum\limits_{i=0}^{\infty}\sum\limits_{j=1}^{n} (i+j) x^{i}.$$

With aid of some online sources I got the answer to be $$\sum\limits_{i=0}^{\infty}\sum\limits_{j=1}^{n} (i+j) x^{i} = \frac{n^2(-x) + n^2 + nx + n}{2(x-1)^{2}}.$$

Can we treat $i$ as a constant in the inner $j$ summation? What is the correct approach and steps to solve this? Please explain.

The Art Of Repetition
  • 2,428
  • 1
  • 7
  • 34
  • Hello and welcome to Math.SE! Can you provide more information's like why are you asking this, where does this question come from and what did you try / what are you thoughts? It's also important to choose a unique and interesting title. Currently the question doesn't meet the site's standards. – The Art Of Repetition Aug 27 '24 at 16:02
  • @Kevin Dietrich Sorry for the unclear writings. I have made some edits , and hope it clears confusion and aligns with the site's policies. – Omkar Deshmukh Aug 27 '24 at 16:44

2 Answers2

1

Can we treat $i$ as a constant in the inner $j$ summation?

Yes. They are independent of each other. Similar to when you take the derivative of $j \cdot i^{2}$ with respect to $i$ ($\frac{\operatorname{d}}{\operatorname{d}i} j \cdot i^{2} = j \cdot 2 \cdot i$): You treat $j$ like a constant.

You can easily see this by at first taking the inner series and then the outer one: \begin{align*} \sum\limits_{i = 0}^{\infty}\left[ \sum\limits_{j = 1}^{n}\left[ \left( i + j \right) \cdot x^{i} \right] \right] &= \sum\limits_{i=0}^{\infty}\left[ \left( i + 1 \right) \cdot x^{i} + \left( i + 2 \right) \cdot x^{i} + \ldots + \left( i + n \right) \cdot x^{i} \right]\\ \end{align*} So we trat $i$ like a constant (inside the inner sum).

What is the correct approach and steps to solve this?

You can do multiple things. E.g.: You could rewrite the sums like this: \begin{align*} \sum\limits_{i = 0}^{\infty}\left[ \sum\limits_{j = 1}^{n}\left[ \left( i + j \right) \cdot x^{i} \right] \right] &= \sum\limits_{j = 1}^{n}\left[ \sum\limits_{i = 0}^{\infty}\left[ \left( i + j \right) \cdot x^{i} \right] \right] = \sum\limits_{j = 1}^{n}\left[ \sum\limits_{i = 0}^{\infty}\left[ i \cdot x^{i} \right] + \sum\limits_{i = 0}^{\infty}\left[ j \cdot x^{i} \right] \right]\\ &= \sum\limits_{j = 1}^{n}\left[ \sum\limits_{i = 0}^{\infty}\left[ i \cdot x^{i} \right] + j \cdot \sum\limits_{i = 0}^{\infty}\left[ x^{i} \right] \right] = \sum\limits_{j = 1}^{n}\left[ \sum\limits_{i = 0}^{\infty}\left[ i \cdot x^{i} \right] \right] + \sum\limits_{j = 1}^{n}\left[ j \cdot \sum\limits_{i = 0}^{\infty}\left[ x^{i} \right] \right]\\ &= \sum\limits_{i = 0}^{\infty}\left[ i \cdot x^{i} \right] \cdot \sum\limits_{j = 1}^{n}\left[ 1 \right] + \sum\limits_{j = 1}^{n}\left[ j \right] \cdot \sum\limits_{i = 0}^{\infty}\left[ x^{i} \right]\\ \end{align*}

We know $\sum\limits_{j = 1}^{n}\left[ 1 \right] = n$ (trivial), $\sum\limits_{j = 1}^{n}\left[ j \right] = \frac{n^{2} + n}{2}$ (this is called a triangular number: see the proof here), $\sum\limits_{i = 0}^{\infty}\left[ x^{i} \right] = \frac{1}{1 - x} \wedge \left| x \right| < 1$ (this is called a infinite geometric series: see a proof here or here) and $\sum\limits_{i = 0}^{\infty}\left[ i \cdot x^{i} \right] = \frac{x}{\left( x - 1 \right)^{2}} \wedge \left| x \right| < 1$ (this is easy to derive via: $\sum\limits_{i = 0}^{\infty}\left[ i \cdot x^{i} \right] = x \cdot \sum\limits_{i = 0}^{\infty}\left[ i \cdot x^{i - 1} \right] = x \cdot \frac{\operatorname{d}\sum\limits_{i = 0}^{\infty}\left[ x^{i} \right]}{\operatorname{d}x} = \frac{\operatorname{d}\frac{1}{1 - x}}{\operatorname{d}x} = \frac{x}{\left( x - 1 \right)^{2}} \wedge \left| x \right| < 1$ - see here). Using this gives us: \begin{align*} \sum\limits_{i = 0}^{\infty}\left[ \sum\limits_{j = 1}^{n}\left[ \left( i + j \right) \cdot x^{i} \right] \right] &= n \cdot \frac{x}{\left( x - 1 \right)^{2}} + \frac{n^{2} + n}{2} \cdot \frac{1}{1 - x} = \frac{n \cdot x}{\left( x - 1 \right)^{2}} + \frac{n^{2} + n}{2 \cdot \left( 1 - x \right)}\\ &= \frac{n \cdot x}{\left( x - 1 \right)^{2}} - \frac{n^{2} + n}{2 \cdot \left( x - 1 \right)} = \frac{2 \cdot n \cdot x}{2 \cdot \left( x - 1 \right)^{2}} - \frac{\left( n^{2} + n \right) \cdot \left( x - 1 \right)}{2 \cdot \left( x - 1 \right)^{2}}\\ &= \frac{2 \cdot n \cdot x - \left( n^{2} + n \right) \cdot \left( x - 1 \right)}{2 \cdot \left( x - 1 \right)^{2}} = \frac{-n^{2} \cdot x + n^{2} + n \cdot x + n}{2 \cdot \left( x - 1 \right)^{2}} \wedge \left| x \right| < 1\\ \end{align*}

So: $$\fbox{$\sum\limits_{i = 0}^{\infty}\left[ \sum\limits_{j = 1}^{n}\left[ \left( i + j \right) \cdot x^{i} \right] \right] = \frac{-n^{2} \cdot x + n^{2} + n \cdot x + n}{2 \cdot \left( x - 1 \right)^{2}} \wedge \left| x \right| < 1$}$$

The Art Of Repetition
  • 2,428
  • 1
  • 7
  • 34
-1

Yes in the inner sum i is a constant, you see it if you do the summation for a small n like n=3 or 4. for the outer sum consider the derivative of the geometric series.

trula
  • 1,737