It's an ad hoc method of computing (a multiple of) the order of $\,a\bmod n\,$ by elimination when a nice "splitting" is obvious: $\, 1 + a^j\:\! b\equiv 0\equiv \color{#c00}{a^\ell+b^k}\pmod{\!n},\, $ yielding
$\quad\ \bmod\ n\!:\ \ \ \ \ {-}1\ \equiv\:\, a^{\large j}\, b,\,$ so by Power & Product Rules
$\quad\ \ {\rm above}^{\large k}\, \Rightarrow\, \pm1^{\phantom{|^{|^|}}}\!\! \equiv\ a^{\large jk} \color{#c00}{b^{\large k}} \equiv\ a^{\large jk}(- \color{#c00}{a^{\large \ell}})\equiv\, -a^{jk+\ell},\ $ i.e. succinctly
$\quad\ \bmod \ n\!:\ \ \ \ \ {-}1\, \equiv\:\, a^{j} b\Rightarrow \pm1\equiv a^{jk}\color{#c00}{b^k} \equiv -a^{jk}\color{#c00}{a^\ell}\equiv -a^{jk+\ell}$
$\quad\ \bmod 641\!:\ \ {-}1\, \equiv\:\, 2^{7} 5\,\Rightarrow\, 1\equiv 2^{28}\color{#c00}{5^4} \equiv -2^{28}\color{#c00}{2^4}\equiv -2^{32}\ \ \ \ \rm [OP]$
$\quad\ \bmod 23\!:\ \ \ \ \ \ \ 1\, \equiv\:\, 2^{3} 3\,\Rightarrow\, 1\equiv 2^9\color{#c00}{3^3} \equiv 2^9\color{#c00}{2^2}\equiv 2^{11}\qquad \rm [others]$
$\quad\ \bmod 73\!:\ \ \ \,{-}1\, \equiv\:\, 2^{3} 3\,\Rightarrow\, 1\equiv 2^6\color{#c00}{3^4} \equiv 2^6\color{#c00}{2^3}\equiv 2^{9}$
$\quad\ \bmod 47\!:\ \ \ \ \ \ 1\ \equiv\:\, 2^{4} 3\,\Rightarrow\, 1\equiv 2^{20}\color{#c00}{3^5} \equiv 2^{20}\color{#c00}{3^3}\equiv 2^{23}$
$\quad\ \bmod 97\!:\ \ \ \ \ \ 1\, \equiv\:\, 2^{5} 3\,\Rightarrow\, 1\equiv 2^{20}\color{#c00}{3^4} \equiv -2^{20}\color{#c00}{2^4}\equiv -2^{24}$
$\quad\ \bmod 251\!:\ {-}1\, \equiv\ 2\, 5^3\!\Rightarrow\! {-}1\equiv 2\ \color{#c00}{5}^3 \equiv 2(\color{#c00}{2^8})^3\equiv 2^{25}$
$\quad\ \bmod 431\!:\, {-}1\, \equiv\ 2^{4} 3^3\,\Rightarrow\, 1\equiv 2^{16}(\color{#c00}{3^{4}})^3 \equiv 2^{16}(\color{#c00}{2^9})^3\equiv 2^{43}$
Generally we can eliminate $\,b\,$ from $\,a^i b^j \equiv \pm1 \equiv a^k b^l$ when they are independent, and this may yield a short certificate enabling efficient verification of some divisibility $\,n\mid a^m\pm1\,$ (e.g. analogous to Pratt primality certificates).
Historical Remark $ $ As mentioned in this old question, this method was used by Coxeter to verify the factor $641$ of the $5$'th Fermat number (which was mentioned in Hardy & Wright's popular number theory textbook)
via Factor Theorem $\ \color{#0a0}{a^7b!-!c\mid (a^7b)^4!-!c^4},$ for $,c=-1;,$ simpler $,a^7b\equiv c,\Rightarrow, (a^7b)^4\equiv c^4.\ \ $
– Bill Dubuque Aug 25 '24 at 20:03