Let $\mathcal{H,K}$ be Hilbert spaces. Consider $S = \mathbb{C} I_{\mathcal{H}} \otimes \mathcal{B(K)} \subseteq \mathcal{B(H \otimes K)}$. Then, it is known that the commutant of $S$, $S' = \mathcal{B(H)} \otimes \mathbb{C} I_{\mathcal{K}}$.
Is there a natural generalisation in the following way:
Let $\mathcal{A}$ be a $C^*$-algebra and $\pi: \mathcal{A} \to \mathcal{B(K)}$ be an irreducible representation. Let $S = \mathbb{C} I_{\mathcal{H}} \otimes \pi(\mathcal{A}) \subseteq \mathcal{B(H \otimes K)}$. Then is it true that $S' = \mathcal{B(H)} \otimes \mathbb{C} I_{\mathcal{K}}$ ?
Note: $\pi(\mathcal{A})$ need not be the entire $\mathcal{B(K)}$ but $\pi(\mathcal{A})' = \mathbb{C} I_{\mathcal{K}}$ because $\pi$ is irreducible.