Backgourd:
The complex function $f(z)$ is analytic on a closed circle $\overline D(z_0,r)$. Prove that: $$f'(z_0)=\frac{1}{2\pi\text{i}}\int_{\partial D(z_0,r)}\frac{f(z)}{(z-z_0)^{2}}\mathrm{d}z$$
We know that $f^{}(z_0)=\frac{1}{2\pi\text{i}}\int_{\partial D(z_0,r)}\frac{f(z)}{(z-z_0)^{}}\mathrm{d}z$, if we can "somehow" change the order of derivative: $$\tag{1}\frac{\mathrm{d}f}{\mathrm{d}z}_{|z=z_0}=\frac{1}{2\pi\text{i}}\frac{\mathrm{d}}{\mathrm{d}z}_{|z=z_0}\int_{\partial D(z_0,r)}\frac{f(\zeta)}{(\zeta-z_0)^{}}\mathrm{d}\zeta"="\frac{1}{2\pi\text{i}}\int_{\partial D(z_0,r)}\frac{f(\zeta)}{(\zeta-z_0)^{2}}\mathrm{d}\zeta,$$ then we are done. To prove the order can be changed, let $z_0+re^{\text{i}t}$ be the parametric representation of the circle $D(z_0,r)$. We also know: $$2\pi f(z_0)=\int_{0}^{2\pi}f(z_0+re^{\text{i}t})\mathrm{d}t\Rightarrow f'(z_0)=\frac{\mathrm{d}}{\mathrm{d}z}_{|z=z_0}\int_0^{2\pi}f(z_0+re^{\text{i}t})\mathrm{d}t$$ If the order can be changed, then $$\tag{2} \frac{\mathrm{d}}{\mathrm{d}z}_{|z=z_0}\int_0^{2\pi}f(z_0+re^{\text{i}t})\mathrm{d}t=\int_0^{2\pi}\frac{\partial f(z_0+re^{\text{i}t})}{\partial z}_{|z=z_0}\mathrm{d}t$$ But it seems to be miss something in $(2)$. What should I do if I want to solve my question by proving the odrer can be changed?
And here my textbook prove a lemma without showing the details of how to use the lemma to prove.

What should I do to use the lemma to prove it?