$$S(n)=\sum_{r=1}^{n}\sec^2\left(\frac{2r\pi}{n}\right)$$
I started with the identity $\sec^2(x)=1+\tan^2(x)$ to try and simplify this;
$$\sum_{r=1}^{n}\sec^2\left(\frac{2r\pi}{n}\right)=\sum_{r=1}^{n}\left(1+\tan^2\left(\frac{2r\pi}{n}\right)\right)=n+\sum_{r=1}^{n}\tan^2\left(\frac{2r\pi}{n}\right)$$ We land on, $$T(n)=\sum_{r=1}^{n}\tan^2\left(\frac{2r\pi}{n}\right)$$
Now trying to solve this I have tried to substitute $\tan(x)=\frac{e^{ix}-e^{-ix}}{i(e^{ix}+e^{-ix})}$ to try and use any standard progressions, but that path failed, the expression got complicated. No hope on telescoping as well.
I know about $\sum_{r=1}^{n}\sin^2\left(\frac{2r\pi}{n}\right), \sum_{r=1}^{n}\cos^2\left(\frac{2r\pi}{n}\right)$, but cannot think of anything works the same way for the tan series, unless the double angle identity of tangent makes it easier;
$$1-\frac{2\tan(x)}{\tan(2x)}=\tan^2(x)$$
$$T(n)=\sum_{r=1}^{n} \left(1-\frac{2\tan\left(\frac{2r\pi}{n}\right)}{\tan\left(\frac{4r\pi}{n}\right)}\right)=n-2\sum_{r=1}^{n} \frac{\tan\left(\frac{2r\pi}{n}\right)}{\tan\left(\frac{4r\pi}{n}\right)}$$
I am interested in understanding how this can be evaluated
Note: I do know the closed form is $S(n)=n^2\implies T(n)=n^2-n$
Edit :
Here's the solution for the original $n$ value it was intended; $n=2023$
$$x^{2023}-1=\prod_{n=1}^{2023}\left(x-e^{\frac{n2i\pi }{2023}}\right)$$ $$x \to -x$$ $$x^{2023}+1=\prod_{n=1}^{2023}\left(x+e^{\frac{-n2i\pi }{2023}}\right)$$
Multiply above equations;
$$x^{4046}-1=\prod_{n=1}^{2023}\left(x-e^{\frac{n2i\pi }{2023}}\right)\prod_{n=1}^{2023}\left(x+e^{\frac{-n2i\pi }{2023}}\right)=\prod_{n=1}^{2023}\left(x-e^{\frac{n2i\pi }{2023}}\right)\left(x+e^{\frac{-n2i\pi }{2023}}\right)$$
$$x^{4046}-1=\prod_{n=1}^{2023}\left(x^2-x\left(e^{\frac{n2i\pi }{2023}}-e^{\frac{-n2i\pi }{2023}}\right)-1\right)$$
$$x^{4046}-1=\prod_{n=1}^{2023}\left(x^2-2ix\left(\frac{e^{\frac{n2i\pi }{2023}}-e^{\frac{-n2i\pi }{2023}}}{2i}\right)-1\right)$$
$$x^{4046}-1=\prod_{n=1}^{2023}\left(x^2-2ix\sin\left({\frac{2n\pi }{2023}}\right)-1\right)$$
$$x \to ix$$
$$x^{4046}+1=\prod_{n=1}^{2023}\left(x^2-2x\sin\left({\frac{2n\pi }{2023}}\right)+1\right)=\prod_{n=1}^{2023}2x\left(\frac{x^2+1}{2x}-\sin\left({\frac{2n\pi }{2023}}\right)\right)$$
$$2^{-2023}(x^{2023}+x^{-2023})=\prod_{n=1}^{2023}\left(\frac{x^2+1}{2x}-\sin\left({\frac{2n\pi }{2023}}\right)\right)$$
$$\frac{x^2+1}{2x}=t\implies x=t+\sqrt{t^2-1}\,\,|| \,\,(t+\sqrt{t^2-1})^{-1}=t-\sqrt{t^2-1}$$
$$2^{-2023}\left((t+\sqrt{t^2-1})^{2023}+(t-\sqrt{t^2-1})^{2023}\right)=\prod_{n=1}^{2023}\left(t-\sin\left({\frac{2n\pi }{2023}}\right)\right)$$
Differentiate above equation and applying below property and after lots of simplification;
$$\frac{d}{dx}\prod_{n=1}^{2023} f(x)=\prod_{n=1}^{2023} f(x)\,\sum_{n=1}^{2023} \frac{f'(x)}{f(x)}$$
$$\sum_{n=1}^{2023} \left(\frac{1}{t-\sin\left(\frac{2n\pi}{2023}\right)}\right)=\frac{2023}{\sqrt{t^2-1}}\left(\frac{(t+\sqrt{t^2-1})^{2023}-(t-\sqrt{t^2-1})^{2023}}{(t+\sqrt{t^2-1})^{2023}+(t-\sqrt{t^2-1})^{2023}}\right)$$
$$t \to -t$$
$$\sum_{n=1}^{2023} \left(\frac{1}{t+\sin\left(\frac{2n\pi}{2023}\right)}\right)=\frac{2023}{\sqrt{t^2-1}}\left(\frac{(t+\sqrt{t^2-1})^{2023}-(t-\sqrt{t^2-1})^{2023}}{(t-\sqrt{t^2-1})^{2023}+(t+\sqrt{t^2-1})^{2023}}\right)$$
Adding above two equations; $$\sum_{n=1}^{2023} \left(\frac{1}{t-\sin\left(\frac{2n\pi}{2023}\right)}\right)+ \left(\frac{1}{t+\sin\left(\frac{2n\pi}{2023}\right)}\right)=\frac{4046}{\sqrt{t^2-1}}\left(\frac{(t+\sqrt{t^2-1})^{2023}-(t-\sqrt{t^2-1})^{2023}}{(t-\sqrt{t^2-1})^{2023}+(t+\sqrt{t^2-1})^{2023}}\right)$$
$$\sum_{n=1}^{2023} \left(\frac{1}{t^2-\sin^2\left(\frac{2n\pi}{2023}\right)}\right)=\frac{2023}{t\sqrt{t^2-1}}\left(\frac{(t+\sqrt{t^2-1})^{2023}-(t-\sqrt{t^2-1})^{2023}}{(t-\sqrt{t^2-1})^{2023}+(t+\sqrt{t^2-1})^{2023}}\right)$$
Applying the right hand limit on both sides,
$$\lim_{t\to1}\sum_{n=1}^{2023} \left(\frac{1}{t^2-\sin^2\left(\frac{2n\pi}{2023}\right)}\right)=\lim_{t\to1}\frac{2023}{t\sqrt{t^2-1}}\left(\frac{(t+\sqrt{t^2-1})^{2023}-(t-\sqrt{t^2-1})^{2023}}{(t-\sqrt{t^2-1})^{2023}+(t+\sqrt{t^2-1})^{2023}}\right)$$
$$\sum_{n=1}^{2023} \left(\frac{1}{1-\sin^2\left(\frac{2n\pi}{2023}\right)}\right)=\lim_{t\to1}\frac{2023}{t\sqrt{t^2-1}}\left(\frac{(t+\sqrt{t^2-1})^{2023}-(t-\sqrt{t^2-1})^{2023}}{(t-\sqrt{t^2-1})^{2023}+(t+\sqrt{t^2-1})^{2023}}\right)$$
$$\sum_{r=1}^{2023}\sec^2\left(\frac{2r\pi}{2023}\right)=\lim_{t\to1}\frac{2023}{t\sqrt{t^2-1}}\left(\frac{(t+\sqrt{t^2-1})^{2023}-(t-\sqrt{t^2-1})^{2023}}{(t-\sqrt{t^2-1})^{2023}+(t+\sqrt{t^2-1})^{2023}}\right)$$
Using L'hospital, $$\sum_{r=1}^{2023}\sec^2\left(\frac{2r\pi}{2023}\right)=2023^2$$
$$\sum_{r=1}^{2023}\tan^2\left(\frac{2r\pi}{2023}\right)=(2022)(2023)$$