We will use a heuristic approach to find the asymptotics. Let's denote
$$S(n,p)=\sum_{k=0}^{n}\binom{n}{k} k^p=n!\sum_{k=0}^{n}\frac{e^{p\ln k}}{\Gamma(k+1)\Gamma(n-k+1)},\,\,p\geqslant0$$
At $n\to\infty$ the sum has a sharp maximum near the point $k=\frac n2$. Applying the Euler-Maclaurin summation formula we note, that all terms are exponentially small compared to the first one. It means that we can switch from summation to integration.
$$S(n,p)\sim n!\int_0^ne^{p\ln k-\ln\Gamma(z+1)-\ln\Gamma(n-z+1)}dz$$
Applying the Laplace' method, we find the point of maximum $z_0$ of the function
$f(z)=p\ln k-\ln\Gamma(z+1)-\ln\Gamma(n-z+1)$ :
$$f'(z_0)=\frac p{z_0}-\Psi(z_0+1)+\Psi(n-z_0+1)=0$$
Using the asymptotic of $\psi$-function we find
$$z_0=\frac n2+\frac p2+o(1)$$
$$f''(z_0)\approx-\frac4n+\frac4{n^2}(1-p)$$
For the required level of approximation we will also need
$$f^{(4)}(z_0)\approx-\frac{32}{n^3}$$
Decomposing $f(z)$ near the maximum point $z_0$
$$S(n,p)\sim\frac{n!\,z_0^p}{\Gamma(z_0+1)\Gamma(n-z_0+1)}\int_0^ne^{-\big(\frac4n-\frac4{n^2}(1-p)\big)\frac{(z-z_0)^2}2-\frac{4(z-z_0)^4}{3n^3}}dz$$
Making the substitution $z=nt$, decomposing the exponent and keeping only the terms relevant for our level of accuracy
$$\sim\frac{n!\,n\,\big(\frac{n+p}2\big)^p}{\Gamma\big(\frac{n+p}2+1\big)\Gamma\big(\frac{n-p}2+1\big)}\int_{-1/2}^{1/2} e^{-2nt^2}\big(1-2(p-1)t^2\big)\left(1-\frac{4n}3t^4\right)dt$$
Making the substitution $t=\frac x{\sqrt{2n}}$ and expanding the integration to $\pm\infty$
$$S(n,p)\sim\frac{n!\,n\,\big(\frac{n+p}2\big)^p}{\Gamma\big(\frac{n+p}2+1\big)\Gamma\big(\frac{n-p}2+1\big)}\sqrt{\frac\pi{2n}}\left(1-\frac p{2n}+\frac1{4n}\right)$$
Decomposing also
$$(n+p)^p\sim n^p\left(1+\frac{p^2}n\right) $$
$$\frac{n!}{\Gamma\big(\frac{n+p}2+1\big)\Gamma\big(\frac{n-p}2+1\big)}=\frac1{(n+1)B\big(\frac {n+p}2+1;\frac {n-p}2+1\big)}\sim\frac{2^{n+1}}{n+1}\sqrt{\frac n{2\pi}}\left(1-\frac{p^2-3/2}{2n}\right)$$
we get the answer:
$$\boxed{\,\,S(n,p)\sim2^{n-p}n^p\left(1+\frac{p(p-1)}{2n}+O\Big(\frac1{n^2}\Big)\right)\,\,}$$