6

Question: How to evaluate the trigonometric product $$ P = \cos\left(\frac\pi{2n + 1}\right) \cos\left(\frac{3\pi}{2n + 1}\right)\cdots \cos\left(\frac{\left[2n - 1\right]\pi}{2n+1}\right) $$ where $n$ is a positive integer ?.

  • I tried to write the cosine components of the product in their exponential form as $$ \cos\left(\frac{k\pi}{2n + 1}\right) = {1 \over 2}\left(% {\rm e}^{{\rm i}k\pi/\left[2n + 1\right]} - {\rm e}^{-{\rm i}k\pi/\left[2n + 1\right]} \right)$$ and then rewrite the product $P$ as a sum of exponentials.
  • However, it is hard to keep track of the orders of all the exponential terms.
  • Besides, the summation does not necessarily make the evaluation easier.

I would like to know any other better methods.

Ace
  • 2,159
  • 8
    According to Mathematica, it seems that $\prod_{k=1}^n 2\cos\left(\frac{2k-1}{2n+1}\pi\right)=(-1)^{n(n-1)/2}$. – Semiclassical Aug 16 '24 at 18:01
  • Ah... I do believe taking there cosine as complex nunber is the right way to do this, Because finally, After shifting those, you can see it as $1/2^n\times (1+z_i)$ where you can evaluate the polynomial of all roots $z_i$. The trick you can try is take the square of that and argue the magnitude, this will make life better. – JetfiRex Aug 16 '24 at 18:11
  • These kinds of problems often can be understood via coefficients of Chebyshev polynomials. – Thomas Andrews Aug 16 '24 at 18:11
  • Another circuitous line of attack is via linear algebra. Namely, the cosines here are eigenvalues of particular tridiagonal matrices (see here for reference and proof). This reduces the problem to computing the determinants of such matrices, since these are the products of their eigenvalues. – Semiclassical Aug 16 '24 at 19:12
  • Multiplication in time domain is the same as convolution in frequency domain. the Fourier transform of $cos(\dot)$ is two $\delta(\dot)$ carriers (symmetric around 0). Each time we multiply a new factor, it means in the frequency domain, we shall move the existing $\delta(\dot)$ carriers left and right with the new frequency. – GBmath Aug 16 '24 at 19:30
  • 2
    @Semiclassical it is different. The product is only for the odd components as well as for arbitrary $n$. – Ace Aug 16 '24 at 20:31
  • 1
    Looking at it again, I think that particular Q&A is indeed not a suitable duplicate. (The one linked by Riemann might be more appropriate, specifically regarding lab bhattacharjee's answer.) – Semiclassical Aug 16 '24 at 21:30
  • The even-$\pi$ components are hidden there but negated: $$\begin{align} \cos \frac{2\pi}{2n+1} &= -\cos\frac{(2n-1)\pi}{2n+1}\ \cos \frac{4\pi}{2n+1} &= -\cos\frac{(2n-3)\pi}{2n+1}\ \cos \frac{2n\pi}{2n+1} &= -\cos\frac{\pi}{2n+1}\ \end{align}$$

    So some might suggest that $\prod_{r=1}^{7} \cos \left(\frac{r\pi}{15}\right)$ is similar.

    – peterwhy Aug 16 '24 at 22:38
  • From the form of the answer, I speculate that there may be a way to relate this to the discriminant of a suitable polynomial. – J. S. Aug 18 '24 at 02:01
  • The posed question $ \prod_{k=1}^{n}\cos\left(\frac{\left[2k - 1\right]\pi}{2n + 1}\right) $ is quite different from $ \prod_{r=1}^{7} \cos \left(\frac{r\pi}{15}\right) $ https://math.stackexchange.com/q/1351337/686284 – Ace Aug 24 '24 at 13:04

6 Answers6

4

Per the following Chebyshev factorization

$$ \frac{\sin[(2n+1)x]}{\sin x}= U_{2n} (\cos x)=2^n\prod_{k=1}^n \bigg(\cos2x+\cos\frac{(2k-1)\pi}{2n+1} \bigg) $$ set $x=\frac\pi4$ to obtain the product $$P_n = \prod_{k=1}^n \cos\frac{(2k-1)\pi}{2n+1} = \frac1{2^{n}}\bigg( \sin\frac{n\pi}2+ \cos\frac{n\pi}2\bigg)=\frac1{2^n}(-1)^{\frac{n(n-1)}2} $$

Quanto
  • 120,125
2

Let's define $$Q=\prod_{k=1}^n\sin\left(\frac{2k-1}{2n+1} \pi \right)$$ Then $$\begin{align} 2^nPQ &= 2^n\cdot\prod_{k=1}^n\cos\left(\frac{2k-1}{2n+1} \pi \right)\cdot \prod_{k=1}^n\sin\left(\frac{2k-1}{2n+1} \pi \right)\\ &=\prod_{k=1}^n\left(2 \cos\left(\frac{2k-1}{2n+1} \pi \right) \sin\left(\frac{2k-1}{2n+1} \pi \right)\right)\\ &=\prod_{k=1}^n\sin\left(\frac{2(2k-1)}{2n+1} \pi \right) \\ &=\prod_{k=1}^{\lfloor\frac{n+1}{2} \rfloor}\sin\left(\frac{2(2k-1)}{2n+1} \pi \right) \cdot \prod_{k=\lfloor\frac{n+1}{2} \rfloor+1}^{n}\sin\left(\frac{2(2k-1)}{2n+1} \pi \right)\tag{1}\\ &=\prod_{k=1}^{\lfloor\frac{n+1}{2}\rfloor}\sin\left(\color{red}{\pi-}\frac{2(2k-1)}{2n+1} \pi \right) \cdot \prod_{k=\lfloor\frac{n+1}{2} \rfloor+1}^{n}\color{red}{(-1)}\cdot\sin\left(\frac{2(2k-1)}{2n+1} \pi \color{red}{ - \pi} \right)\tag{2}\\ &=(-1)^{n-\lfloor\frac{n+1}{2}\rfloor}\cdot\prod_{k=1}^{\lfloor\frac{n+1}{2} \rfloor}\sin\left(\frac{2(n+2-2k)-1}{2n+1} \pi \right) \cdot \prod_{k=\lfloor\frac{n+1}{2} \rfloor+1}^{n}\sin\left(\frac{2(2k-1-n)-1}{2n+1} \pi \right)\tag{3}\\ &= (-1)^{n-\lfloor\frac{n+1}{2}\rfloor}\cdot\prod_{k=1}^{n}\sin\left(\frac{2k-1}{2n+1} \pi \right) \tag{4}\\ 2^nPQ&= (-1)^{n-\lfloor\frac{n+1}{2}\rfloor}\cdot Q \tag{5} \end{align}$$

Remark:

$(1)$ : The first product contains $\lfloor\frac{n+1}{2} \rfloor$ terms that satisfy $\frac{2(2k-1)}{2n+1}\pi <\pi \iff k<\frac{n+1.5}{2} \iff k \le \lfloor\frac{n+1}{2} \rfloor$, the second product contains $n-\lfloor\frac{n+1}{2} \rfloor$ that satisfy $\frac{2(2k-1)}{2n+1}\pi >\pi$.

$(2)$: apply the formula $ \sin(\pi - x)=\sin(x)$ for the terms of the first product and the formula $\sin(x-\pi) = -\sin(x)$ for the terms of the second product

$(3)\implies (4)$: all $n$ expressions inside the sin function of the two products take values in the set $\left\{\frac{1}{2n+1}\pi,\frac{3}{2n+1}\pi,...,\frac{2n-1}{2n+1}\pi \right\}$ and are different from each other ( suppose by contracdiction that there are two indices $p,q\in \mathbb{N}$ such that $\frac{2(n+2-2p)-1}{2n+1} \pi =\frac{2(2q-1-n)-1}{2n+1} \pi $, we must have then $2n = 2(p+q)-3$: can't occurs as $p,q,n \in \mathbb{N}$). As a consequence, the $n$ terms are different from each other and take values in the set of $n$ elements $\left\{\sin\left( \frac{1}{2n+1}\pi\right),\sin\left( \frac{3}{2n+1}\pi\right),...,\sin\left( \frac{2n-1}{2n+1}\pi \right) \right\}$

From $(5)$, we conclude that

$$\color{red}{P = \frac{(-1)^{n-\lfloor\frac{n+1}{2}\rfloor}}{2^n}} \tag{6}$$

Remark: $$n-\lfloor\frac{n+1}{2}\rfloor \equiv \frac{n(n-1)}{2} \pmod 2$$ Then, the result $(6)$ is equivalent to the result suggested by @Semiclassical, i.e

$$\color{red}{P = \frac{(-1)^{\frac{n(n-1)}{2}}}{2^n}} $$

NN2
  • 20,162
2

I start with an elementary claim.

Claim: $\frac{(-1)^n}{2^{2n}} = \prod_{r=1}^{2n} \cos\left(\frac{r}{2n+1}\pi\right)$

Proof: Consider the $2n+1$-th roots of unity other than $1$ ie $$\begin{align} \frac{x^{2n+1} - 1}{x-1} &= \prod_{r=1}^{2n} \left(x-e^{2i\pi\frac{r}{2n+1}}\right) \overset{x=-1}{\implies} \\ 1 &= (-1)^{2n} \prod_{r=1}^{2n} \left(1+e^{2i\pi\frac{r}{2n+1}}\right) \implies\\ 1 &= \prod_{r=1}^{2n}\left|1 + \cos\left(\frac{2r\pi}{2n+1}\right) + i \sin\left(\frac{2r\pi}{2n+1}\right)\right| \\ 1 &= \prod_{r=1}^{2n} \sqrt{\left(1 + \cos\left(\frac{2r\pi}{2n+1}\right)\right)^2 + \sin^2\left(\frac{2r\pi}{2n+1}\right)} \\ 1 &= \prod_{r=1}^{2n} 2 \sqrt{\cos^2\left(\frac{r\pi}{2n+1}\right)} \\ 1 &= 2^{2n}(-1)^n \prod_{r=1}^{2n} \cos\left(\frac{r\pi}{2n+1}\right) \tag{0.1} \\ \frac{(-1)^n}{2^{2n}} &= \prod_{r=1}^{2n} \cos\left(\frac{r}{2n+1}\pi\right) \end{align}$$ $(0.1)$ is true since $\sqrt{x^2} = |x|$ and there are exactly $n$ negative cosines dealt in the product.


We are interested in $P := \prod_{k=1}^{n} \cos\left(\frac{2k-1}{2n+1}\pi\right)$. But note that $$\begin{align} \prod_{k=1}^{2n} \cos\left(\frac{k}{2n+1}\pi\right) &= P \prod_{k=1}^{n}\cos\left(\frac{2k}{2n+1}\pi\right) \tag{1.1} \\ &= P \prod_{k=1}^n -\cos\left(\pi - \frac{2k}{2n+1}\pi\right)\tag{1.2}\\ &= (-1)^nP\prod_{k=1}^n \cos\left(\frac{2n+1-2k}{2n+1}\pi\right) \\ &= (-1)^nP\prod_{k=1}^n \cos\left(\frac{2k-1}{2n+1}\pi\right) \tag{1.3}\\ &= (-1)^n P^2 \\ P^2 &= \frac1{2^{2n}} \\ \left|P\right| &= \frac1{2^n}\\ P &= \frac{(-1)^{n+1 - \lceil \frac{2n+3}4 \rceil }}{2^n} \tag{1.4}\\ P &= \frac{(-1)^{\frac{n(n-1)}2}}{2^n} \tag{1.5} \end{align}$$

$(1.1)$ follows by splitting the product into two based on the parity of $k$.

$(1.2)$ uses $\cos(\pi - x) = -\cos(x)$.

$(1.3)$ re-writes the product in the previous line from the end to start, ie re-indexing $k\to n-k+1$.

$(1.4)$ similar to $(0.1)$ we count the number of negative cosines appearing in our product; there are exactly $n + 1 - \lceil \frac{2n+3}{4}\rceil$ such cosines.

$(1.5)$ uses that $\bmod 2: n+1- \lceil \frac{2n+3}{4}\rceil \equiv \lfloor \frac{n}2\rfloor \equiv \frac{n(n-1)}2$.

Sahaj
  • 5,355
1

Use the fact(Evaluating the product $\prod\limits_{k=1}^{n}\cos\left(\frac{k\pi}{n}\right)$ or $\prod_{k=1}^{n-1}\cos\left(\theta+\frac{k\pi}{n}\right)$): $$\prod_{k=1}^{n-1}\cos\left(\frac{k\pi}{n}\right) = \frac{\sin(\frac{\pi n}{2})}{2^{n-1}},\quad n=1,2,\cdots,$$ make change $n\to2n+1$, we get $$\prod_{k=1}^{2n}\cos\left(\frac{k\pi}{2n+1}\right)=\frac{\sin\left(\frac{\pi(2n+1)}{2}\right)}{2^{2n}}=\frac{(-1)^n}{2^{2n}},\quad n=1,2,\cdots.$$ By the formular $\cos(\pi-x)=-\cos(x)$, we can get $$(-1)^n\prod_{k=1}^{n}\cos^2\left(\frac{k\pi}{2n+1}\right)=\frac{(-1)^n}{2^{2n}},\quad n=1,2,\cdots.$$ So $$\prod_{k=1}^{n}\cos^2\left(\frac{k\pi}{2n+1}\right)=\frac{1}{2^{2n}},\quad n=1,2,\cdots,$$ i.e., $$\left|\prod_{k=1}^{n}\cos\left(\frac{k\pi}{2n+1}\right)\right|=\frac{1}{2^n},\quad n=1,2,\cdots,$$ In the following we determine the sign of the product: $$P_n=\prod_{k=1}^{n}\cos\left(\frac{k\pi}{2n+1}\right).$$ Divide into two cases:

(1) if $n=2m-1$ is odd, then $2n+1=4m-1$ and there are $2m-1$ terms in the product $P_n$ and $(m-1)$ terms are negative: $$\cos\frac{2m-1}{4m-1}\pi,\cos\frac{2m+1}{4m-1}\pi,\cdots,\cos\frac{4m-3}{4m-1}\pi.$$ So the sign of the product $P_n$ in this case is $$(-1)^{m-1}=\left[(-1)^{2m-1}\right]^{m-1}=(-1)^{\frac{(2m-2)(2m-1)}2}=(-1)^{\frac{(n-1)n}2}.$$ (2) if $n=2m$ is even, then $2n+1=4m+1$ and there are $2m$ terms in the product $P_n$ and $m$ terms are negative: $$\cos\frac{2m+1}{4m+1}\pi,\cos\frac{2m+3}{4m+1}\pi,\cdots,\cos\frac{4m-1}{4m+1}\pi.$$ So the sign of the product $P_n$ in this case is $$(-1)^{m}=\left[(-1)^{2m-1}\right]^{m}=(-1)^{\frac{(2m-1)(2m)}2}=(-1)^{\frac{(n-1)n}2}.$$

All in all, we have $$\prod_{k=1}^{n}\cos\left(\frac{k\pi}{2n+1}\right)= \frac{(-1)^{\frac{(n-1)n}{2}}}{2^n}.$$ (Dute to @ Semiclassical pointing out this result by Mathematica)

Riemann
  • 11,801
1

The equation $\cos (2n+1) \theta =-1$ has roots $\pi, \pm \dfrac{\pi}{2n+1}, \pm \dfrac{3\pi}{2n+1},\ldots, \pm\dfrac{(2n-1)\pi}{2n+1}$

Using results from Chebyshev polynomials we have that the roots of

$2^{2n}t^{2n+1}-\ldots +1=0$ has roots $-1, \cos \dfrac{(2k-1)\pi}{2n+1}, 1\le k \le 2n-1$ where all roots except $t=-1$ are double roots.

Thus if the required product is denoted by $P$ we have $|P| = \dfrac{1}{2^n}$

We further note that if $n$ is even then the negative terms in $P$ are $\cos \dfrac{(n+1)\pi}{2n+1},\ldots \cos \dfrac{(2n-1)\pi}{2n+1} $ i.e. $\dfrac{n}{2}$ of them. Similarly if $n$ is odd, we have $\dfrac{n-1}{2}$ negative terms

Its now clear that $P = \dfrac{(-1)^{\frac{n(n-1)}{2}}}{2^n}$

Hari Shankar
  • 4,066
0

Another variation. In order to show \begin{align*} \color{blue}{\prod_{q=1}^{n}\cos\left(\frac{2q-1}{2n+1}\pi\right)=(-1)^{\frac{n(n-1)}{2}}\frac{1}{2^n}}\tag{1} \end{align*} we consider the roots of unity $e^{\frac{2\pi i q}{2n+1}}, 0\leq q \leq 2n$ of the polynomial

\begin{align*} p(z)=z^{2n+1}-1=\prod_{q=0}^{2n}\left(z-e^{\frac{2\pi i q}{2n+1}}\right) \end{align*}

We obtain \begin{align*} -p(-z)&=z^{2n+1}+1=\prod_{q=0}^{2n}\left(z+e^{\frac{2\pi i q}{2n+1}}\right)\\ &=(z+1)\prod_{q=1}^{n}\left[\left(z+e^{\frac{2\pi i q}{2n+1}}\right)\left(z+e^{-\frac{2\pi i q}{2n+1}}\right)\right]\\ &=(z+1)\prod_{q=1}^n\left[z^2+\left(e^{\frac{2\pi i q}{2n+1}}+e^{-\frac{2\pi i q}{2n+1}}\right)z+1\right]\tag{2} \end{align*}

Evaluating the polynomial $-p(-z)$ at $z=i$ in (2) gives \begin{align*} {\color{blue}{\frac{i^{2n+1}+1}{i+1}}} &=\prod_{q=1}^n\left[2i\cos\left(\frac{2q}{2n+1}\,\pi\right)\right]\tag{3}\\ &\color{blue}{=2^ni^n\prod_{q=1}^n\cos\left(\frac{2q}{2n+1}\,\pi\right)}\tag{4}\\ &=2^ni^n\prod_{q=1}^n\left[-\cos\left(\pi-\frac{2q}{2n+1}\,\pi\right)\right]\\ &=2^n\left(-i\right)^n\prod_{q=1}^n\cos\left(\frac{2n+1-2q}{2n+1}\,\pi\right)\\ &\color{blue}{=2^n(-i)^n\prod_{q=1}^n\cos\left(\frac{2q-1}{2n+1}\,\pi\right)}\tag{5}\\ \end{align*}

In (3) we use the identity $\cos(z)=\frac{1}{2}\left(e^{iz}+e^{-iz}\right)$. In (5) we change the order of multiplication: $q\to n-q+1$.

We conclude from (3) and (5) \begin{align*} \color{blue}{\prod_{q=1}^{n}\cos\left(\frac{2q-1}{2n+1}\,\pi\right)} &=\frac{1+(-1)^ni}{1+i}\,\frac{1}{(-i)^n}\,\frac{1}{2^n}\\ &=\frac{1}{2}\,\left(1+(-1)^ni\right)(1-i)i^n\,\frac{1}{2^n}\\ &=\left(\frac{1+(-1)^n}{2}\,i^n-\frac{1-(-1)^n}{2}\,i^{n+1}\right)\frac{1}{2^n}\\ &\,\,\color{blue}{=(-1)^{\frac{n(n-1)}{2}}\,\frac{1}{2^n}} \end{align*} and the claim (1) follows.

Note:

The comparison of (4) with (5) also results in \begin{align*} {\color{blue}{\prod_{q=1}^{n}\cos\left(\frac{2q}{2n+1}\,\pi\right)}} &=(-1)^{\frac{n(n-1)}{2}+n}\,\frac{1}{2^n}\\ &\,\,\color{blue}{=(-1)^{\frac{n(n+1)}{2}}\,\frac{1}{2^n}} \end{align*} and multiplication of both identities gives \begin{align*} {\color{blue}{\prod_{q=1}^{2n}\cos\left(\frac{q}{2n+1}\,\pi\right)}} &=\left[\prod_{q=1}^{n}\cos\left(\frac{2q}{2n+1}\,\pi\right)\right] \left[\prod_{q=1}^{n}\cos\left(\frac{2q-1}{2n+1}\,\pi\right)\right]\\ &=\left[(-1)^{\frac{n(n+1)}{2}}\,\frac{1}{2^n}\right]\left[(-1)^{\frac{n(n-1)}{2}}\,\frac{1}{2^n}\right]\\ &=(-1)^{n^2}\,\frac{1}{2^{2n}}\\ &\,\,\color{blue}{=(-1)^n\,\,\frac{1}{2^{2n}}} \end{align*}

Markus Scheuer
  • 112,413