2

Let $t >0$ and $x_1,x_2 \in {\mathbb R}$ and consider the following quantity below:

\begin{equation} Z_+^{(0)}(x_1,x_2,t):= \frac{1}{\sqrt{4 \pi t}} \left( \exp(-\frac{(x_2-x_1)^2}{4 t}) - \exp(-\frac{(x_2+x_1)^2}{4 t}) \right) \tag{1} \end{equation}

By the method of images(see equation (20) page 4 in 1), the quantity above, represents the probability density for a Brownian motion started at $x_1$ at time zero to hit $x_2$ at time $t$ given that the trajectory is non-negative (absorbing boundary conditions at the x-axis). Now, by using the formula $\int\limits_0^\infty \exp(-A/\xi^2 - B\cdot \xi^2) d\xi = \sqrt{\pi}/2 \exp(-2 \sqrt{A B})/\sqrt{B} $ for $A,B > 0 $ we can easily give the Laplace transform of the quantity in (1). It reads:

\begin{equation} {\tilde Z}_+^{(0)}(x_1,x_2,s) = \frac{1}{2\sqrt{s}} \left( e^{-\sqrt{s} |x_1-x_2|} - e^{-\sqrt{s} (x_1+x_2)} \right) \tag{1a} \end{equation}

Now let $s, \tau >0$ and consider the following integral(see equation (46) page 6 in 1):

\begin{equation} {\mathfrak f}_{x_1,x_2}^{(s)} (\tau) := \int\limits_\tau^\infty \frac{\exp(-s t)}{t} Z_+^{(0)}(x_1,x_2,t) dt \tag{2} \end{equation}

Now, by expressing the Gaussian terms in (1) by inverse Fourier transforms we can show the following identities:

\begin{eqnarray} {\mathfrak f}_{x_1,x_2}^{(s)} (\tau) &=&\frac{1}{\pi} \int\limits_0^\infty \Gamma(0,(s+k^2)\tau) \left( \cos(k(x_1-x_2)) - \cos(k(x_1+x_2))\right) dk \\ &=&\frac{1}{\pi} \int\limits_0^\infty \frac{2 k e^{-\tau \left(k^2+s\right)} }{k^2+s} \left( \frac{\sin(k(x_1-x_2)}{x_1-x_2} - \frac{\sin(k(x_1+x_2)}{x_1+x_2}\right) dk \\ &=& -\frac{1}{\pi} \int\limits_0^\infty \left( \frac{e^{-\left(\tau \left(k^2+s\right)\right)} \left(2 k^2+\tau \left(4 k^4+4 k^2 s\right)-2 s\right)}{\left(k^2+s\right)^2}\right) \left( \frac{\cos(k(x_1-x_2)}{(x_1-x_2)^2} - \frac{\cos(k(x_1+x_2)}{(x_1+x_2)^2}\right) dk \tag{3} \end{eqnarray} where the last two lines were obtained by integrating by parts once and twice respectively.

In[480]:= 
Zp0[x1_, x2_, t_] := 
  1/Sqrt[4 Pi t] (Exp[-(x2 - x1)^2/(4 t)] - Exp[-(x2 + x1)^2/(4 t)]);
{x1, x2, s} = RandomReal[{1, 2}, 3, WorkingPrecision -> 50];
\[Tau] = 10^(-6);
SetOptions[NIntegrate, WorkingPrecision -> 15, PrecisionGoal -> 10, 
  MaxRecursion -> 15];
NIntegrate[Exp[-s t]/t  Zp0[x1, x2, t], {t, \[Tau], Infinity}]
2 NIntegrate[
   Gamma[0, (s + k^2) \[Tau]] (Cos[k (x1 - x2)] - 
      Cos[k (x1 + x2)]), {k, 0, Infinity}]/(2  Pi)
-2 NIntegrate[-((2 E^-((k^2 + s) \[Tau]) k)/(
     k^2 + s)) (Sin[k (x1 - x2)]/(x1 - x2) - Sin[k (x1 + x2)]/(
      x1 + x2)), {k, 0, Infinity}]/(2  Pi)
-2 NIntegrate[(
    E^-((k^2 + s) \[Tau])  (2  k^2 - 
       2  s + (4  k^4 + 4  k^2  s)  \[Tau]))/(k^2 + 
      s)^2 (Cos[k (x1 - x2)]/(x1 - x2)^2 - 
      Cos[k (x1 + x2)]/(x1 + x2)^2), {k, 0, Infinity}]/(2  Pi)
+2 NIntegrate[-((
     4  E^-((k^2 + s) \[Tau])  k  (k^2 - 
        3  s + (k^4 - 2  k^2  s - 3  s^2)  \[Tau] + (2  k^6 + 
           4  k^4  s + 2  k^2  s^2)  \[Tau]^2))/(k^2 + s)^3) (Sin[
       k (x1 - x2)]/(x1 - x2)^3 - Sin[k (x1 + x2)]/(x1 + x2)^3), {k, 
    0, Infinity}]/(2  Pi)
+2 NIntegrate[(
    4  E^-((k^2 + s) \[Tau])  (3  k^4 - 18  k^2  s + 
       3  s^2 + (3  k^6 - 15  k^4  s - 15  k^2  s^2 + 
          3  s^3)  \[Tau] + (-12  k^6  s - 24  k^4  s^2 - 
          12  k^2  s^3)  \[Tau]^2 + (4  k^10 + 12  k^8  s + 
          12  k^6  s^2 + 4  k^4  s^3)  \[Tau]^3))/(k^2 + 
      s)^4 (Cos[k (x1 - x2)]/(x1 - x2)^4 - 
      Cos[k (x1 + x2)]/(x1 + x2)^4), {k, 0, Infinity}]/(2  Pi)

Out[484]= 2.57551235522698

Out[485]= 2.57551235522713

Out[486]= 2.57551235522698

Out[487]= 2.57551235522698

Out[488]= 2.57551235522698

Out[489]= 2.57551236445117

Now, by using the Cauchy theorem being applied to the the last expression in (3) above we easily see that $f(0) = e^{-\sqrt{s} |x_1-x_2|}/|x_1-x_2| - e^{-\sqrt{s} |x_1+x_2|}/|x_1+x_2|$. As such the value at zero of the function in (2) is finite. It turns out that this function approaches that value very smoothly from the right and in fact all the derivatives of that function at zero vanish. On the other hand if we truncate the upper limit of integration in the right hand side in the top line in (3) then, by using the series expansion $\Gamma(0,\tau) = -\gamma - \log(\tau) + O(\tau)$, we can see that, for every truncation threshold $M$, our function has a logarithmic singularity at the origin. We can see all this in the plot below where I show the truncated $k$-integrals for different threshold values $M=1/2,1,2$ (blue,green and red respectively) along with the improper integral (black) all that as a function of $\tau$. Here you go:

enter image description here

As such all this is in perfect unison with what the paper claims (albeit the notation being used there is a bit confusing). see equations (46) and (47) in pages 6 and 7 respectively: enter image description here


In the next step we will be computing the propagator of the fractional Brownian motion (fBM).

First of all we define the action $ {\mathcal S}[x] := 1/2 \int\limits_{[0,t]^2} G(t_1,t_2) \cdot x(t_1) x(t_2) d t_1 dt_2 = {\mathcal S}^{(0)}[x] + (H-1/2)^1 {\mathcal S}^{(1)}[x] + O((H-1/2)^2) $ where $G(t_1,t_2)$ is the functional inverse of the auto-covariance of the fBM. In other words we have $(G^{-1})(t_1,t_2) := t_1^{2 H} + t_2^{2 H} - \left| t_1-t_2 \right|^{2 H}$.

Being braced with this we are ready to define the first order correction to the propagator (compare equation (34) in the paper):

\begin{equation} Z_+^{(1)}\left(x_0,x,t\right):= -\frac{1}{x_0} \int\limits_{x(0)=x_0}^{x(t)=x} {\mathcal D}[x] \cdot {\mathcal S}^{(1)}[x] \cdot e^{-{\mathcal S}^{(0)}[x]} \cdot \Theta[x] \tag{4} \end{equation} Here $\Theta[x]$ is a Heaviside function applied to the whole path $x$. Its purpose is to enforce the path (trajectory) to be non-negative.

Now, we split the quantity in $(4)$ into two terms one being hard and another one rather simple. Here we go:

\begin{eqnarray} &&Z_+^{(1)}\left(x_0,x,t\right)=\\ && \underbrace{\frac{1}{2 x_0} \int\int\limits_{0 \le t_1 \le t_2 \le t} d t_1 dt_2 \cdot \int\limits_{x(0)=x_0}^{x(t)=x} {\mathcal D}[x] \frac{\dot{x(t_1)}\dot{x(t_2)}}{|t_1-t_2|} \cdot e^{-{\mathcal S}^{(0)}[x]} \cdot \Theta[x]}_{Z_+^B\left(x_0,x,t\right)} + \\ && \underbrace{\frac{2}{x_0} \left(1+\log(\tau)\right) \cdot \int\limits_{x(0)=x_0}^{x(t)=x} {\mathcal D}[x] \cdot {\mathcal S}^{(0)}[x] \cdot e^{-{\mathcal S}^{(0)}[x]} \cdot \Theta[x]}_{Z_+^A\left(x_0,x,t\right)} \tag{5} \end{eqnarray} where we used the functional form of the first correction to the action (see equation (30) in the paper).

Now it turns out that the "hard" part of the first order correction, i.e. the $Z_+^B$ quantity, has a simpler form after being Laplace transformed. It reads as follows (compare equation (42) in the paper):

\begin{eqnarray} {\tilde Z}_+^{B}(x_0,x,s) := -\frac{2}{x_0} \int\limits_0^\infty \int\limits_0^\infty {\tilde Z}_+^{(0)}(x_0,x_1,s) {\tilde Z}_+^{(0)}(x_2,x,s) \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} \left[ {\mathfrak f}_{x_1,x_2}^{(s)}(\tau) \right] \cdot d x_1 d x_2 \tag{6} \end{eqnarray}

Now, the paper claims (see equation (50) in page 7) that the quantity above has a logarithmic divergence in $\tau$. The objective of this post is to reproduce that equation , using exact calculations (without small-$\tau$ approximations), and then establish once and for all whether that quantity does have or does not have that logarithmic divergence (in what sense does it have that divergence). This is the first objective o this post.

The second objective is to verify that the first order correction to the propagator, as in $(4)$ above, does not depend on the cut-off $\tau$. This is absolutely necessary to verify because otherwise it wouldn't be possible to take the limit of the cut-off going to zero.

1: Kay Joerg Wiese, Perturbation Theory for Fractional Brownian Motion in Presence of Absorbing Boundaries, arXiv 1011.4807

Przemo
  • 11,971
  • 1
  • 25
  • 56

3 Answers3

1

We compute the Laplace transform of the propagator in (4). This is actually all pretty straightforward but let us go through this step by step.

The mixed partial derivative:

\begin{eqnarray} \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} \left[ {\mathfrak f}_{x_1,x_2}^{(s)}(\tau) \right] &=& \frac{1}{\pi} \int\limits_0^\infty \Gamma\left(0,(s+k^2) \tau\right) \cdot k^2 \left( \cos[k(x_1-x_2)] + \cos[k(x_1+x_2)] \right) dk \tag{I} \end{eqnarray} Here we used the right hand side of the top line in (3) and simple differentiating rules.

Integrating over the first quadrant:

\begin{eqnarray} Re\int\limits_0^\infty \int\limits_0^\infty {\tilde Z}_+^{(0)} (x_0,x_1) {\tilde Z}_+^{(0)}(x_2,x,s) \cdot \left( e^{\imath k (x_1-x_2)} + e^{\imath k (x_1+x_2)} \right) dx_1 dx_2 &=&\\ Re\int\limits_0^\infty \int\limits_0^\infty \frac{e^{-\sqrt{s}|x_0 - x_1|} - e^{-\sqrt{s}(x_0+x_1)} }{2 \sqrt{s}} \frac{e^{-\sqrt{s}|x_2 - x |} - e^{-\sqrt{s} (x_2+x) }}{2 \sqrt{s}} \cdot \left( e^{\imath k (x_1-x_2)} + e^{\imath k (x_1+x_2)} \right) dx_1 dx_2 &=&\\ \frac{2}{(k^2 + s)^2} \left(\cos[k x_0] - e^{-\sqrt{s} x_0} \right) \cdot \left(\cos[k x] - e^{-\sqrt{s} x} \right) \tag{II} \end{eqnarray}

We obtained the final result by splitting the double integral into four parts over regions firstly, $ \Delta_1:= \left\{ (x_1,x_2) : 0\le x_1 \le x_0, 0 \le x_2 \le x \right\} $, then secondly $ \Delta_2:= \left\{ (x_1,x_2) : x_0\le x_1 < \infty , 0 \le x_2 \le x \right\} $, then thirdly $ \Delta_3:= \left\{ (x_1,x_2) : 0\le x_1 \le x_0, x \le x_2 < \infty \right\} $ and fourthly $ \Delta_4:= \left\{ (x_1,x_2) : x_0 \le x_1 < \infty, x \le x_2 < \infty \right\} $ . In each region we expanded the result and integrated term by term by means of Mathematica.

We verify the result of (I) and of (II) below:

{x1, x2, x, x0, s} = RandomReal[{1, 2}, 5, WorkingPrecision -> 50];
Zp0[x1_, x2_, t_] := 
  1/Sqrt[4  Pi  t] (Exp[-(x2 - x1)^2/(4  t)] - 
     Exp[-(x2 + x1)^2/(4  t)]);
\[Tau] = 10^(-6);
Clear[X1, X2];
(*This is here to verify the mixed partial derivatives.*)
SetOptions[NIntegrate, PrecisionGoal -> 10, WorkingPrecision -> 15, 
  MaxRecursion -> 20];
ff[X1_?NumericQ, X2_?NumericQ] := 
  NIntegrate[Exp[-s  t]/t  Zp0[X1, X2, t], {t, \[Tau], Infinity}];
dx = Exp[-Range[1, 10, 1/10]];
Take[((ff[x1, x2] - ff[x1 - #, x2] - ff[x1, x2 - #] + 
        ff[x1 - #, x2 - #])/(#)^2) & /@ dx, -5] // MatrixForm
1/Pi  NIntegrate[
  Gamma[0, (s + k^2)  \[Tau]] k^2 (Cos[k  (x1 - x2)] + 
     Cos[k  (x1 + x2)]), {k, 0, Infinity}]
(*This is here to verify the integration over (x1,x2)*)
k = RandomReal[{-2, 2}, WorkingPrecision -> 50];
NIntegrate[
 Ztilde0p[x0, x1, s] Ztilde0p[x2, x, 
   s] (Cos[k  (x1 - x2)] + Cos[k  (x1 + x2)]), {x1, 0, Infinity}, {x2,
   0, Infinity}]
(2  (Cos[k  x] - E^(-Sqrt[s]  x))  (Cos[k  x0] - 
   E^(-Sqrt[s]  x0)))/(k^2 + s)^2

The outcome of the code above. Firstly, the partial derivatives numerically and analytically. Secondly, the double integral over the first quadrant numerically and analytically.

This essentially finishes the derivation. The final result reads as follows:

\begin{eqnarray} &&{\tilde Z}_+^B(x_0,x,s) = \\ &&- \frac{4}{\pi x_0} \int\limits_0^\infty \frac{k^2 \Gamma\left(0, (s+k^2) \tau\right)}{(k^2+s)^2} \cdot \left( \cos[k x_0] - e^{-\sqrt{s} x_0} \right) \cdot \left( \cos[k x ] - e^{-\sqrt{s} x } \right) dk =\\ &&- \frac{4}{\pi x_0 \sqrt{s}} \int\limits_0^\infty \frac{k^2 \Gamma\left(0, (1+k^2) s\tau\right)}{(k^2+1)^2} \cdot \left( \cos[k \sqrt{s} x_0] - e^{-\sqrt{s} x_0} \right) \cdot \left( \cos[k \sqrt{s} x ] - e^{-\sqrt{s} x } \right) dk \tag{III} \end{eqnarray}

where in the second line we put $ k \rightarrow k \sqrt{s}$.

The result above matches with equation (50) in page 7 in the paper except that in the equation in question they use the the approximation to the incomplete Gamma function and we have the whole thing.


We verify numerically that the Laplace transform of the propagator does indeed have a logarithmic singularity in $\tau$. In other words we have:

\begin{equation} {\tilde Z}_+^B(x_0,x,s) = {\tilde Z}_+^{B,sing} (x_0,x,s) + {\tilde Z}_+^{B,reg} (x_0,x,s) \tag{IV} \end{equation}

where

\begin{eqnarray} {\tilde Z}_+^{B,sing} (x_0,x,s) &=& -\frac{4}{x_0 \pi} \int\limits_0^{1/\sqrt{\tau}} \left(\cdots \right) dk = \left( \cdots \right) \cdot \log(\tau)\\ {\tilde Z}_+^{B,sing} (x_0,x,s) &=& -\frac{4}{x_0 \pi} \int\limits_{1/\sqrt{\tau}}^\infty \left(\cdots \right) dk = \left( \cdots \right) + O(\tau) \end{eqnarray}

{x, x0, s} = RandomReal[{1, 2}, 3];
\[Tau]s = Exp[-Range[1, 10, 1/10]];
valssing = {#, 
     4/x0  1/Pi  NIntegrate[
       Gamma[0, (s + k^2) #] (
        2  k^2 (Cos[k  x] - E^(-Sqrt[s]  x))  (Cos[k  x0] - 
           E^(-Sqrt[s]  x0)))/(k^2 + s)^2 , {k, 0, 1/
        Sqrt[#]}]} & /@ \[Tau]s;
valsreg = {#, 
     4/x0  1/Pi  NIntegrate[
       Gamma[0, (s + k^2) #] (
        2  k^2 (Cos[k  x] - E^(-Sqrt[s]  x))  (Cos[k  x0] - 
           E^(-Sqrt[s]  x0)))/(k^2 + s)^2 , {k, 1/Sqrt[#], 
        Infinity}]} & /@ \[Tau]s;
ListLogLinearPlot[{valssing, valsreg}, PlotStyle -> {Blue, Purple}, 
 AxesLabel -> {"\[Tau]", 
   "\!\(\*SubscriptBox[TemplateBox[{\nOverscriptBox[\"Z\", \"~\"], \
\"B\"},\n\"Superscript\"], \(\"\<+\>\"\)]\)[x0,x,s]"}, 
 PlotLegends -> {"singular(blue)", "regular(red)"}]

The singular (blue) and the regular (red) parts of the propagator as a function of the truncation threshold <span class=$\tau$." />


All the calculations up to this point were exact. At this point we will use an approximation $\Gamma(0,\tau) = -\log(\tau) - \gamma + O(\tau)$. The usage of that approximation is justified by the fact that we are interested in our propagator in the limit $\tau \rightarrow 0_+$ only. This is because the quantity in question is the so called ultraviolet cut-off , which in the final calculation (not considered in here), has to be set equal to zero.

What we do now is to replace the incomplete Gamma function in the second line in (III) by the approximation, i.e. the logarithm plus the Euler gamma constant. We define an auxiliary function as below:

\begin{eqnarray} &&J(u,x):= \\ && - \sqrt{\pi} \frac{\psi^{(0)}(1+u)}{\Gamma(1+u)} \int\limits_0^\infty z^{u-1/2} e^{-z - \frac{x^2}{4 z}} dz + \\ && \sqrt{\pi} \frac{1}{\Gamma(1+u)} \int\limits_0^\infty \log(z) z^{u-1/2} e^{-z - \frac{x^2}{4 z}} dz \tag{Va} \end{eqnarray} where $\psi^{()}()$ is the poly-gamma function.

Now we are ready to write down the result.Here you go:

\begin{eqnarray} &&{\tilde Z}^B_+\left(x_0,x,s\right) = \\ && \frac{2}{\pi x_0 \sqrt{s}} \left( \left. \frac{d}{d u} \right|_{u=1} - \left. \frac{d}{d u} \right|_{u=0} \right) \cdot \int\limits_{{\mathbb R}} \frac{ \left[ \frac{1}{2} e^{\imath k \sqrt{s} (x-x_0)} + \frac{1}{2} e^{\imath k \sqrt{s} (x+x_0)} - e^{-\sqrt{s} x_0} e^{\imath k \sqrt{s} x} - e^{-\sqrt{s} x} e^{\imath k \sqrt{s} x_0} + e^{-\sqrt{s} (x+x_0)} \right] }{(1+k^2)^{1+u}} dk - \\ && \frac{2}{\pi x_0 \sqrt{s}} \left( \left. 1 \right|_{u=1} - \left. 1 \right|_{u=0} \right) \cdot \int\limits_{{\mathbb R}} \frac{ \left[ \frac{1}{2} e^{\imath k \sqrt{s} (x-x_0)} + \frac{1}{2} e^{\imath k \sqrt{s} (x+x_0)} - e^{-\sqrt{s} x_0} e^{\imath k \sqrt{s} x} - e^{-\sqrt{s} x} e^{\imath k \sqrt{s} x_0} + e^{-\sqrt{s} (x+x_0)} \right] }{(1+k^2)^{1+u}} dk = \\ && \frac{2}{\pi \sqrt{s} x_0} \cdot \left( \right. \\ && \left. \frac{1}{2} \left(J\left(1,\sqrt{s} \left(x-x_0\right)\right)-J\left(0,\sqrt{s} \left(x-x_0\right)\right)\right)+ \right. \\ && \left. % \frac{1}{2} \left(J\left(1,\sqrt{s} \left(x+x_0\right)\right)-J\left(0,\sqrt{s} \left(x+x_0\right)\right)\right)+ \right. \\ && \left. % -e^{-\sqrt{s} x_0} \left(J\left(1,\sqrt{s} x\right)-J\left(0,\sqrt{s}x\right)\right)+ \right. \\ && \left. % % % -e^{-\sqrt{s} x} \left(J\left(1,\sqrt{s} x_0\right)-J\left(0,\sqrt{s} x_0\right)\right)+ \right. \\ && \left. % % % \frac{1}{2} \pi (1+\log (4)) e^{-\sqrt{s} \left(x+x_0\right)} \right. \\ && \left. % \right) % % +\frac{\left(e^{-\sqrt{s} \left(|x-x_0|\right)} \left(-\sqrt{s} \left(|x-x_0|\right)+1\right)+e^{-\sqrt{s} \left(x+x_0\right)} \left(\sqrt{s} \left(x+x_0\right)-1\right)\right) (\log (s \tau )+\gamma )}{2 \sqrt{s} x_0} \tag{Vb} \end{eqnarray}

Again, the code below verifies that the result is correct.

(*This is our {\tilde Z}^B_+[x0,x,s]*)
Clear[u];
{x0, x} = RandomReal[{0, 2}, 2, WorkingPrecision -> 20];
\[Tau] = 10^(-3);
myfct[u_?NumericQ, x_?NumericQ] := 
  Sqrt[Pi]/Gamma[1 + u]  NIntegrate[
    z^(u - 1/2) Exp[-z - x^2/(4 z)], {z, 0, Infinity}];
myfctD[u_?NumericQ, x_?NumericQ] := 
  Sqrt[Pi]/
    Gamma[1 + 
      u]  NIntegrate[(Log[z] - 
       PolyGamma[0, 1 + u]) z^(u - 1/2)  Exp[-z - x^2/(4  z)], {z, 0, 
     Infinity}];

SetOptions[NIntegrate, WorkingPrecision -> 15, PrecisionGoal -> 10, MaxRecursion -> 15]; s = RandomReal[{1, 2}, WorkingPrecision -> 20]; 4/(2 Pi Sqrt[s] x0) NIntegrate[ k^2/(1 + k^2)^2 (Log[1 + k^2] + Log[s [Tau]] + EulerGamma) (Cos[k x0 Sqrt[s]] - Exp[-x0 Sqrt[s]]) (Cos[k x Sqrt[s]] - Exp[-x Sqrt[s]]), {k, -Infinity, Infinity}]

(4/(2 Pi Sqrt[s] x0) (Nest[(D[#, u] /. u :> 1) - (D[#, u] /. u :> 0) &, 1/2 myfct[u, Sqrt[s] (x - x0)] + 1/2 myfct[u, Sqrt[s] (x + x0)] - Exp[-Sqrt[s] x0] myfct[u, Sqrt[s] x] - Exp[-Sqrt[s] x] myfct[u, Sqrt[s] x0], 1] + -(1/2) E^(-Sqrt[s] (x + x0)) [Pi] (-1 - Log[4])) + (Log[ s [Tau]] + EulerGamma)/( 2 Sqrt[s] x0) (E^(-Sqrt[s] (x + x0)) (-1 + Sqrt[s] (x + x0)) + E^(-Sqrt[s] (Abs[x - x0])) (1 - Sqrt[s] Abs[x - x0])))

2/(Pi Sqrt[s] x0) ( 1/2 (myfctD[1, Sqrt[s] (x - x0)] - myfctD[0, Sqrt[s] (x - x0)]) + 1/2 (myfctD[1, Sqrt[s] (x + x0)] - myfctD[0, Sqrt[s] (x + x0)]) + -Exp[-Sqrt[s] x0] (myfctD[1, Sqrt[s] x] - myfctD[0, Sqrt[s] x]) + -Exp[-Sqrt[s] x] (myfctD[1, Sqrt[s] x0] - myfctD[0, Sqrt[s] x0]) ) + 1/Sqrt[s] E^(-Sqrt[s] (x + x0)) (1 + Log[4])/x0 + (Log[s [Tau]] + EulerGamma)/( 2 Sqrt[s] x0) ((E^(-Sqrt[s] (x + x0)) (-1 + Sqrt[s] (x + x0)) + E^(-Sqrt[s] Abs[(x - x0)]) (1 - Sqrt[s] Abs[x - x0])))

The propagator in the <span class=$s$-domain numerically and analytically." />


At this point , the only thing that remains to be done is to invert the Laplace in (Vb) and obtain the propagator in the time domain. For most of the terms the inversion is easy. There is one exception though, which is the $J$ term. We demonstrate that those terms are actually quite simple after inversion. Indeed, we have:

\begin{eqnarray} &&{\mathcal L}_s^{-1} \left[ J(u, \sqrt{s} x\right](t) = \\ &&\frac{\sqrt{\pi}}{\Gamma(1+u)} \cdot \int\limits_0^\infty \left( - \psi^{(0)}(1+u) + \log(z) \right) z^{u- 1/2} e^{-z} \cdot \underbrace{\delta \left( t - \frac{x^2}{2 z} \right)}_{\frac{1}{\frac{4 t^2}{x^2}} \cdot \delta \left( z - \frac{x^2}{4 t} \right)} dz = \\ &&\frac{\sqrt{\pi}}{\Gamma(1+u)} \cdot \left( - \psi^{(0)}(1+u) + \log(\frac{x^2}{4 t}) \right) \cdot (\frac{x^2}{4 t})^{u-1/2} \cdot e^{-\frac{x^2}{4 t}} \cdot \frac{x^2}{4 t^2} \tag{VI} \end{eqnarray}


Przemo
  • 11,971
  • 1
  • 25
  • 56
0

In here we invert the Laplace transform given in $(Vb)$ in my previous answer above. Let us define auxiliary functions first:


\begin{eqnarray} {\mathfrak h}_1^{(x)}(t)&:=& {\mathcal L}_s^{-1} \left[ \log(s) \frac{e^{-\sqrt{s} x}}{\sqrt{s}}\right] (t) &=& \frac{e^{-\frac{x^2}{4 t}} \left(-F_{1,1}^{(1,0,0)}\left(0,\frac{1}{2},\frac{x^2}{4 t}\right)+\pi \text{erfi}\left(\frac{x}{2 \sqrt{t}}\right)-\log (t)+\psi ^{(0)}\left(\frac{1}{2}\right)\right)}{\sqrt{\pi } \sqrt{t}} \\ {\mathfrak h}_2^{(x)}(t)&:=& {\mathcal L}_s^{-1} \left[ \log(s) e^{-\sqrt{s} x}\right] (t) &=&-\frac{e^{-\frac{x^2}{4 t}} \left(x F_{1,1}^{(1,0,0)}\left(0,\frac{3}{2},\frac{x^2}{4 t}\right)-\pi x \text{erfi}\left(\frac{x}{2 \sqrt{t}}\right)+2 \sqrt{\pi } \sqrt{t} e^{\frac{x^2}{4 t}}+x \log (t)-x \psi ^{(0)}\left(\frac{3}{2}\right)\right)}{2 \sqrt{\pi } t^{3/2}} \end{eqnarray}


Then there is another set of auxiliary functions as below:

\begin{eqnarray} f_I^{(x,x_0)}(t) &:=& \frac{e^{-\frac{\left(x+x_0\right){}^2}{4 t}} \left(e^{\frac{x x_0}{t}} \left(2 t-\left(x-x_0\right){}^2\right)-2 t+x^2+2 x_0 x+x_0^2\right)}{2 \sqrt{\pi } t^{3/2}} \\ f_{II}^{(x,x_0)}(t) &:=& -{\mathfrak h}_1^{(x+x_0)}(t) + {\mathfrak h}_1^{|x-x_0|}(t) + (x+x_0) {\mathfrak h}_2^{(x+x_0)}(t) - |x-x_0| {\mathfrak h}_2^{|x-x_0|}(t) \\ f_{III}^{(x)}(t) &:=& \frac{e^{-\frac{x^2}{4 t}}}{\sqrt{\pi } \sqrt{t}} \\ f_{IV}^{(x,x_0)}(t) &:=&\frac{1}{\sqrt{t}} \exp\left( - \frac{x^2+x_0^2}{4 t} \right) \cdot \int\limits_0^\infty \frac{1}{\sqrt{z}} \cdot e^{-\frac{x^2 x_0^2}{16 t^2 z}-z} \left(\left(\frac{x_0^2}{4 t}+z-1\right) \left(\log \left(\frac{x_0^2}{4 t}+z\right)+\gamma \right)-\frac{x_0^2}{4 t}-z\right) dz \\ f_V^{(x)}(t) &:=& \frac{\sqrt{\pi } e^{-\frac{x^2}{4 t}}}{2 \sqrt{t}} \cdot \left( \right. \\ && \left. -U^{(0,1,0)}\left(0,-\frac{1}{2},\frac{x^2}{4 t}\right) \right. \\ && \left. -U^{(1,0,0)}\left(0,-\frac{1}{2},\frac{x^2}{4 t}\right)+ \right. \\ && \left.\frac{\left(4 t-x^2\right) \left(U^{(0,1,0)}\left(0,\frac{1}{2},\frac{x^2}{4 t}\right)+U^{(1,0,0)}\left(0,\frac{1}{2},\frac{x^2}{4 t}\right)\right)}{2 t}+ \right. \\ && \left. 2 \left(\frac{\gamma x^2}{4 t}-\frac{x^2}{4 t}-\gamma \right)+\gamma -1 \right. \\ && \left. \right) \tag{VIa} \end{eqnarray}


And finally now we are ready to write down the inverse Laplace transform in question:

\begin{eqnarray} &&Z_+^{B}(x_0,x,t) = \\ && \frac{1}{\pi x_0} \left[ -2 \left( f_{IV}^{(x,x_0)}(t) + f_{IV}^{(x_0,x)}(t) \right)+ \left( f_V^{(x-x_0)}(t) + f_V^{(x+x_0)}(t) \right) \right] + \\ &&\frac{1+\log(4)}{x_0} \cdot f_{III}^{(x+x_0)}(t) + \\ && \frac{\log(\tau) + \gamma}{2 x_0} \cdot f_I^{x,x_0}(t) + \frac{1}{2 x_0} \cdot f_{II}^{(x,x_0)}(t) \tag{VIb} \end{eqnarray}

Note 1a:

We write down the easy part of the first order correction, i.e. the quantity $Z_+^A$. It is easily obtained from the free propagator by differentiating it:

\begin{eqnarray} Z_+^A\left(x_0,x,t\right) &=& \frac{2}{x_0} \left(1+\log(\tau)\right) \cdot \left. \frac{\partial}{\partial (-a)} \int\limits_{x(0)=x_0}^{x(t)=x} {\mathcal D}[x] e^{-a {\mathcal S}^{(0)}[x]} \cdot \Theta[x] \right|_{a=1} \\ &=& \frac{2}{x_0} \left(1+\log(\tau)\right) \cdot \left. \frac{\partial}{\partial (-a)} \sqrt{\frac{a}{4 \pi t}} \cdot \left[ e^{-\frac{a}{4 t} (x-x_0)^2} - e^{-\frac{a}{4 t} (x+x_0)^2} \right] \right|_{a=1} \\ &=& -\frac{1}{2 x_0} \left( 1+ \log(\tau) \right) \cdot f_I^{(x,x_0)} (t) \tag{VIc} \end{eqnarray}

By comparing the last line in $(VIc)$ with the last line in $(VIb)$ we see that the terms proportional to $\log(\tau)$ have opposite signs and as such the first correction to the propagator, i.e. $Z_+^{(1)} := Z_+^{A} + Z_+^{B}$, does not depend on the cut-off $\tau$ as expected!

Note 1b:

Now we took $x_0=1/2$ and $t=1/3,1/2,1,2$ (from violet to red respectively) and we plot the first correction to the propagator below:

The first order correction to the propagator for different values of <span class=$t=1/3,1/2,1,2$ (from violet to red respectively)." />

Note 2:

The terms are ordered in the same way as in $(Vb)$ (in particular the last term above corresponds to the bottom term in $(Vb)$.

Note 3:

The Mathematica code snippet verifies the results numerically:

(*Number Three*)
{x, x0, \[Tau], s} = RandomReal[{1, 2}, 4, WorkingPrecision -> 50];
If[x0 > x, tmp = x0; x0 = x; x = tmp;];
SetOptions[NIntegrate, WorkingPrecision -> 15, PrecisionGoal -> 10];
myfctD[u_?NumericQ, x_?NumericQ] := 
  Sqrt[Pi]/
    Gamma[1 + 
      u]  NIntegrate[(Log[z] - 
       PolyGamma[0, 1 + u]) z^(u - 1/2)  Exp[-z - x^2/(4  z)], {z, 0, 
     Infinity}];
fI[t_, x_, x0_] := (
  E^(-((x + x0)^2/(
    4 t))) (-2 t + x^2 + E^((x x0)/t) (2 t - (x - x0)^2) + 2 x x0 + 
     x0^2))/(2 Sqrt[\[Pi]] t^(3/2));
(*InverseLaplaceTransform[Log[s]\[ExponentialE]^(-Sqrt[s] \
(x))/Sqrt[s]]. Note that myaux1[t,x] = -(Log[t]/(Sqrt[\[Pi]] \
Sqrt[t]))  as t--> Infinity*)
myaux1[t_, x_] := (
  E^(-(x^2/(
    4 t))) (\[Pi] Erfi[x/(2 Sqrt[t])] - Log[t] + PolyGamma[0, 1/2] - 
\!\(\*SuperscriptBox[\(Hypergeometric1F1\), 
TagBox[
RowBox[{"(", 
RowBox[{"1", ",", "0", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[0, 1/2, x^2/(4 t)]))/(
  Sqrt[\[Pi]] Sqrt[t]);
(*InverseLaplaceTransform[Log[s]\[ExponentialE]^(-Sqrt[s] (x))]. Note \
that myaux1[t,x] = -(1/t)  as t--> Infinity*)
myaux2[t_, x_] := -((
   E^(-(x^2/(
     4 t))) (2 E^(x^2/(4 t)) Sqrt[\[Pi]] Sqrt[
       t] - \[Pi] x Erfi[x/(2 Sqrt[t])] + x Log[t] - 
      x PolyGamma[0, 3/2] + x 
\!\(\*SuperscriptBox[\(Hypergeometric1F1\), 
TagBox[
RowBox[{"(", 
RowBox[{"1", ",", "0", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[0, 3/2, x^2/(4 t)]))/(
   2 Sqrt[\[Pi]] t^(3/2)));

fII[t_, x_, x0_] := (-myaux1[t, x + x0] + myaux1[t, x - x0] + (x + x0) myaux2[t, x + x0] + (-x + x0) myaux2[t, x - x0]); fIII[t_, x_] := E^(-((x)^2/(4 t)))/(Sqrt[[Pi]] Sqrt[t]);

fIV[t_?NumericQ, x_, x0_] := Exp[-((x^2 + x0^2)/(4 t))]/Sqrt[t] NIntegrate[(-z - x0^2/( 4 t) + (-1 + z + x0^2/(4 t)) (Log[x0^2/(4 t) + z] + EulerGamma)) Exp[-((x^2 x0^2)/(16 t^2 z)) - z]/ Sqrt[(z)], {z, 0, Infinity}];

fV[t_?NumericQ, x_] := Sqrt[[Pi]]/2 Exp[-x^2/(4 t)]/Sqrt[ t] ((-EulerGamma - x^2/(4 t) + (EulerGamma x^2)/(4 t)) 2 + (-1 + EulerGamma) + (- !(*SuperscriptBox[(HypergeometricU), TagBox[ RowBox[{"(", RowBox[{"0", ",", "1", ",", "0"}], ")"}], Derivative], MultilineFunction->None])[0, -(1/2), x^2/(4 t)] - !(*SuperscriptBox[(HypergeometricU), TagBox[ RowBox[{"(", RowBox[{"1", ",", "0", ",", "0"}], ")"}], Derivative], MultilineFunction->None])[0, -(1/2), x^2/(4 t)] + ((4 t - x^2) ( !(*SuperscriptBox[(HypergeometricU), TagBox[ RowBox[{"(", RowBox[{"0", ",", "1", ",", "0"}], ")"}], Derivative], MultilineFunction->None])[0, 1/2, x^2/(4 t)] + !(*SuperscriptBox[(HypergeometricU), TagBox[ RowBox[{"(", RowBox[{"1", ",", "0", ",", "0"}], ")"}], Derivative], MultilineFunction->None])[0, 1/2, x^2/(4 t)]))/(2 t)));

(Log[[Tau]] + EulerGamma)/(2 x0) NIntegrate[fI[t, x, x0] Exp[-s t], {t, 0, Infinity}] (Log[[Tau]] + EulerGamma)/( 2 Sqrt[s] x0) ((E^(-Sqrt[s] (x + x0)) (-1 + Sqrt[s] (x + x0)) + E^(-Sqrt[s] (x - x0)) (1 + Sqrt[s] (-x + x0)))) 1/(2 x0) NIntegrate[fII[t, x, x0] Exp[-s t], {t, 0, Infinity}] (Log[s])/( 2 Sqrt[s] x0) ((E^(-Sqrt[s] (x + x0)) (-1 + Sqrt[s] (x + x0)) + E^(-Sqrt[s] (x - x0)) (1 + Sqrt[s] (-x + x0)))) (1 + Log[4])/x0 NIntegrate[ fIII[t, x + x0] Exp[-s t], {t, 0, Infinity}] 1/Sqrt[s] E^(-Sqrt[s] (x + x0)) (1 + Log[4])/x0

1/(Pi x0) NIntegrate[(-2 (fIV[t, x, x0] + fIV[t, x0, x]) + (fV[t, x - x0] + fV[t, x + x0])) Exp[-s t], {t, 0, Infinity}]

2/(Pi Sqrt[s] x0) ( 1/2 (myfctD[1, Sqrt[s] (x - x0)] - myfctD[0, Sqrt[s] (x - x0)]) + 1/2 (myfctD[1, Sqrt[s] (x + x0)] - myfctD[0, Sqrt[s] (x + x0)]) + -Exp[-Sqrt[s] x] (myfctD[1, Sqrt[s] x0] - myfctD[0, Sqrt[s] x0]) + -Exp[-Sqrt[s] x0] (myfctD[1, Sqrt[s] x] - myfctD[0, Sqrt[s] x]) )

The Laplace transforms, numerically and analytically, of the particular terms in <span class=$(VIb)$. " />

Przemo
  • 11,971
  • 1
  • 25
  • 56
0

As we know from my answer above the first order correction to the propagator (see $(4)$ in the main body of the question for its definition) reads:

\begin{eqnarray} &&Z_+^{(1)}\left(x_0,x,t\right) = \\ && \frac{\gamma-1}{2 x_0} f_I^{(x,x_0)}(t) + \frac{1}{2 x_0} f_{II}^{(x,x_0)}(t) + \frac{1 + \log(4)}{x_0} f_{III}^{(x+x_0)}(t) + \frac{1}{\pi x_0} \left( -2(f_{IV}^{(x,x_0)}(t) + f_{IV}^{(x_0,x)}(t)) +(f_V^{(x-x_0)}(t) + f_V^{(x+x_0)}(t)) \right) \tag{I} \end{eqnarray}

Here we focus on calculating the $x_0 \rightarrow 0_+$ limit of the quantity above. Even taking this limit is a complicated task so rather then splitting the quantity into parts and computing the limit part by part , which is tedious and does not contribute to grasping the bigger picture, we just demonstrate numerically that the limit in question matches the result in the paper .


As always, we define two auxiliary functions as follows:

\begin{eqnarray} {\mathcal I}(z)&:=&\frac{z^4}{6} F_{2,2} \left[\begin{array}{lll} 1 & 1 \\ 3 & 5/2 \end{array}; \frac{z^2}{2} \right] + \pi (1-z^2) erfi[\frac{z}{\sqrt{2}}] - 3 z^2 + \sqrt{2 \pi} z e^{-\frac{z^2}{2}} +2 \\ c(t) &:=& \log(t) + 2 - 2 \gamma \end{eqnarray}

with $z:= x/\sqrt{2 t} $.


And now we are ready to write down the result (see equation (B65) in page 15). Here you go:

\begin{eqnarray} &&\lim\limits_{x_0 \rightarrow 0_+} Z_+^{(1)}\left( x_0,x,t \right) - a_1 \cdot \log(x_0) \cdot \frac{z e^{-\frac{z^2}{2}}}{\sqrt{2 \pi} t}= \\ && \frac{z e^{-\frac{z^2}{2}}}{\sqrt{2 \pi} t} \left\{ \left( (z^2-2)\cdot(\log[2 z^2 t] + \gamma) - 2\right) + {\mathcal I}(z) + c(t) \right\} \tag{II} \end{eqnarray} with $a_1 = -4$.

The code below demonstrates identity $(II)$ with the first correction to the propagator being defined in $(I)$. Here you go:

(*A summary of the x0-->0 limit above: Run (*Definitions *) above.*)
{x0, x, t, \[Tau]} = 
 RandomReal[{0, 2}, 4, WorkingPrecision -> 50]; x0 = 10^(-10); a1 =.;
z = x/Sqrt[2  t];
SetOptions[NIntegrate, WorkingPrecision -> 30, PrecisionGoal -> 25, 
  MaxRecursion -> 15];
singTerm := (E^(-(x^2/(4 t))) ( t) (1 + Log[4]))/( 
   Sqrt[\[Pi]]  (t^(3/2)) ) Pi;
otherterm := -(1/(2 t^(3/2))) E^(-(x^2/(4 t)))
     Sqrt[\[Pi]]  (2  t + 2  EulerGamma  t + x^2 - EulerGamma  x^2 + 
     2  t  
\!\(\*SuperscriptBox[\(HypergeometricU\), 
TagBox[
RowBox[{"(", 
RowBox[{"0", ",", "1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[0, -(1/2), x^2/(4 t)] + 2  t  
\!\(\*SuperscriptBox[\(HypergeometricU\), 
TagBox[
RowBox[{"(", 
RowBox[{"1", ",", "0", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[0, -(1/2), x^2/(4 t)] - (4  t - x^2)  (
\!\(\*SuperscriptBox[\(HypergeometricU\), 
TagBox[
RowBox[{"(", 
RowBox[{"0", ",", "1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[0, 1/2, x^2/(4 t)] + 
\!\(\*SuperscriptBox[\(HypergeometricU\), 
TagBox[
RowBox[{"(", 
RowBox[{"1", ",", "0", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[0, 1/2, x^2/(4 t)]));
Z0p[z_, t_] := (z  E^(-(z^2/2)))/(Sqrt[2 \[Pi]] t);
ll1 = { +((EulerGamma - 1)/(2 x0)) fI[t, x, x0], 
   1/(2 x0) fII[t, x, x0], + ((1 + Log[4])/x0) fIII[t, x + x0] - 
    singTerm/(Pi  x0), 
   1/(Pi x0) (-2 (fIV[t, x, x0] + fIV[t, x0, x]) + (fV[t, x - x0] + 
         fV[t, x + x0])) + singTerm/(Pi  x0)};

(Compare (B53)) II[z_] := z^4/6 HypergeometricPFQ[{1, 1}, {3, 5/2}, z^2/2] + Pi (1 - z^2) Erfi[Sqrt[z^2]/Sqrt[2]] - 3 z^2 + Sqrt[2 Pi] z E^(z^2/2) + 2; cc[t_] := Log[t] + 2 - 2 EulerGamma;

myLimit[z_, t_] := (-2 + z^2)/t + ( E^(-(z^2/ 2)) ((-2 + EulerGamma) Sqrt[t z^2] (-3 + z^2) + Sqrt[t] z (-4 + z^2 - EulerGamma (-3 + z^2))))/( Sqrt[2 [Pi]] t^(3/2)) + 1/(3 Sqrt[2 [Pi]] t^(3/2)) E^(-(z^2/ 2)) (-3 [Pi] Sqrt[t] z (-3 + z^2) Erfi[z/Sqrt[2]] - 3 z^2 Sqrt[t z^2] HypergeometricPFQ[{1, 1}, {3/2, 2}, z^2/2] + z^2 Sqrt[ t z^2] (-2 + z^2) HypergeometricPFQ[{1, 1}, {2, 5/2}, z^2/ 2] - 6 Sqrt[t] z Log[2] + 3 Sqrt[t z^2] (-3 + z^2) Log[4 t]); Z1p[x0, x, t] - Total[ll1] Z1p[x0, x, t] - (myLimit[z, t] + (-2 (fIV[t, x, x0] + fIV[t, x0, x]))/( Pi x0) + ( +(otherterm/(Pi x0)) + singTerm/(Pi x0)))

(Here we verify (B65) in page 15 in the paper.) (Z1p[x0, x, t] - a1 Log[x0] (z E^(-(z^2/2)))/(Sqrt[2 [Pi]] t)) /. a1 :> -4 (z E^(-(z^2/2)))/( Sqrt[2 [Pi]] t) (((z^2 - 2) (Log[2 z^2 t] + EulerGamma) - 2) + II[z] + cc[t])

Numerical validation of identity <span class=$(II)$." />

Przemo
  • 11,971
  • 1
  • 25
  • 56