I need Help to evaluate : $$I=\int^1_0\frac{1}{a^2+\ln^2(x)}\cdot\frac{dx}{1+x^2}$$ Let:$x=e^{-t}$ $$I=\int^{\infty}_0\frac{e^{-t}}{(a^2+t^2)(1+e^{-2t})}dt=\int^{\infty}_0\sum_{n=0}^{\infty}(-1)^n\frac{e^{-t(2n+1)}}{a^2+t^2}dt$$
let:$x=t(2n+1)$ $$I=\int^{\infty}_0\sum_{n=0}^{\infty}(-1)^n\frac{e^{-x}(2n+1)}{x^2+(2na+a)^2}dx$$
How can I evaluate this integration?