0

The Eulerian numbers $E(n, k)$ satisfy the following recurrence relation:

\begin{equation} \left\langle \begin{matrix} n\\k \end{matrix} \right\rangle = (k+1) \left\langle \begin{matrix} n-1\\k \end{matrix} \right\rangle + (n-k) \left\langle \begin{matrix} n-1 \\k-1 \end{matrix} \right\rangle. \end{equation}

The binomial coefficients satisfy the recurrence:

\begin{align} \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}. \end{align}

Recently, I came up with the identity \begin{equation} \left\langle \begin{matrix} n\\k \end{matrix} \right\rangle = (k+1)^{n} - k^{n} \binom{n+1}{n} + (k-1)^{n} \binom{n+1}{n-1} - \cdots + (-1)^{k} \binom{n+1}{n+1-k}, \end{equation} but I am not sure how to prove it with indutcion.

What would be the proof by induction of the identity?

  • Isn't this similar to the proof given here? – Dietrich Burde Aug 09 '24 at 08:14
  • @DietrichBurde The theorem is similar, but I am thinking of a proof by induction. –  Aug 09 '24 at 14:54
  • "which I think is correct too." it completes the proof only if you deduce it from the formula for n, by the recurrence relation, not just writing it down for n+1 – trula Aug 12 '24 at 13:32
  • T.K. Petersen's monograph Eulerian numbers refers to this as Corollary 1.3 (Alternating sum formula). It appears that his readers are expected to proceed by some kind of induction from Corollary 1.2 (Worpitzky’s identity). – hardmath Aug 12 '24 at 17:53

1 Answers1

1

$$\left\langle\begin{matrix}n\\k\end{matrix}\right\rangle=\sum_{j=0}^{k}(-1)^j\binom{n+1}{n+1-j}(k+1-j)^n\tag1$$

Let $L(n,k)$ be the LHS of $(1)$, and $R(n,k)$ be the RHS of $(1)$.

Let us prove $(1)$ by induction on $n$.

We have $L(0,0)=R(0,0)$ and $L(1,0)=R(1,0)$.

Suppose that for $0\le k\lt n$, $(1)$ holds.

Then, we have $$\begin{align}&L(n+1,k)\\\\&=\left\langle\begin{matrix}n+1\\k\end{matrix}\right\rangle \\\\&=(k+1)\left\langle\begin{matrix}n\\k\end{matrix}\right\rangle+(n+1-k)\left\langle\begin{matrix}n\\k-1\end{matrix}\right\rangle \\\\&=(k+1)\sum_{j=0}^{k}(-1)^j\binom{n+1}{n+1-j}(k+1-j)^n+(n+1-k)\sum_{j=0}^{k-1}(-1)^j\binom{n+1}{n+1-j}(k-j)^n \\\\&=(k+1)\bigg((k+1)^n+\sum_{j=\color{red}1}^{k}(-1)^j\binom{n+1}{n+1-j}(k+1-j)^n\bigg)+(n+1-k)\sum_{j=0}^{k-1}(-1)^j\binom{n+1}{n+1-j}(k-j)^n \\\\&=(k+1)^{n+1}+(k+1)\sum_{j=1}^{k}(-1)^j\binom{n+1}{n+1-j}(k+1-j)^n+(n+1-k)\sum_{j=0}^{k-1}(-1)^j\binom{n+1}{n+1-j}(k-j)^n \\\\&=(k+1)^{n+1}+(k+1)\sum_{j=0}^{k-1}(-1)^{j+1}\binom{n+1}{n-j}(k-j)^n+(n+1-k)\sum_{j=0}^{k-1}(-1)^j\binom{n+1}{n+1-j}(k-j)^n \\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j}(k-j)^n\bigg(-(k+1)\binom{n+1}{n-j}+(n+1-k)\binom{n+1}{n+1-j}\bigg) \\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j}(k-j)^n\bigg(-(k+1)\times\frac{(n+1)!}{(n-j)!(j+1)!}+(n+1-k)\times\frac{(n+1)!}{(n+1-j)!j!}\bigg) \\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j}(k-j)^n\frac{(n+1)!}{(n+1-j)!(j+1)!}\bigg(-(k+1)(n+1-j)+(n+1-k)(j+1)\bigg) \\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j}(k-j)^n\frac{(n+1)!}{(n+1-j)!(j+1)!}\times (n+2)(j-k) \\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j+1}(k-j)^{n+1}\binom{n+2}{j+1} \\\\&=(k+1)^{n+1}+\sum_{j=0}^{\color{red}k}(-1)^{j+1}(k-j)^{n+1}\binom{n+2}{j+1} \\\\&=(k+1)^{n+1}+\sum_{j=1}^{k+1}(-1)^{j}(k-j+1)^{n+1}\binom{n+2}{j} \\\\&=\sum_{j=\color{red}0}^{k+1}(-1)^{j}(k-j+1)^{n+1}\binom{n+2}{j} \\\\&=\sum_{j=0}^{k}(-1)^{j}(k-j+1)^{n+1}\binom{n+2}{j} \\\\&=\sum_{j=0}^{k}(-1)^{j}(k-j+1)^{n+1}\binom{n+2}{n+2-j} \\\\&=R(n+1,k).\ \blacksquare\end{align}$$

mathlove
  • 151,597
  • 1
    Mathlove, Thank you very much. +1 and bounty. I have to wait 7 hours to award it, since it says: You may award your bounty worth 50 reputation in 7 hours. –  Aug 13 '24 at 09:15
  • 1
    A bounty is awarded. Thanks again. –  Aug 13 '24 at 16:35