$$\left\langle\begin{matrix}n\\k\end{matrix}\right\rangle=\sum_{j=0}^{k}(-1)^j\binom{n+1}{n+1-j}(k+1-j)^n\tag1$$
Let $L(n,k)$ be the LHS of $(1)$, and $R(n,k)$ be the RHS of $(1)$.
Let us prove $(1)$ by induction on $n$.
We have $L(0,0)=R(0,0)$ and $L(1,0)=R(1,0)$.
Suppose that for $0\le k\lt n$, $(1)$ holds.
Then, we have
$$\begin{align}&L(n+1,k)\\\\&=\left\langle\begin{matrix}n+1\\k\end{matrix}\right\rangle
\\\\&=(k+1)\left\langle\begin{matrix}n\\k\end{matrix}\right\rangle+(n+1-k)\left\langle\begin{matrix}n\\k-1\end{matrix}\right\rangle
\\\\&=(k+1)\sum_{j=0}^{k}(-1)^j\binom{n+1}{n+1-j}(k+1-j)^n+(n+1-k)\sum_{j=0}^{k-1}(-1)^j\binom{n+1}{n+1-j}(k-j)^n
\\\\&=(k+1)\bigg((k+1)^n+\sum_{j=\color{red}1}^{k}(-1)^j\binom{n+1}{n+1-j}(k+1-j)^n\bigg)+(n+1-k)\sum_{j=0}^{k-1}(-1)^j\binom{n+1}{n+1-j}(k-j)^n
\\\\&=(k+1)^{n+1}+(k+1)\sum_{j=1}^{k}(-1)^j\binom{n+1}{n+1-j}(k+1-j)^n+(n+1-k)\sum_{j=0}^{k-1}(-1)^j\binom{n+1}{n+1-j}(k-j)^n
\\\\&=(k+1)^{n+1}+(k+1)\sum_{j=0}^{k-1}(-1)^{j+1}\binom{n+1}{n-j}(k-j)^n+(n+1-k)\sum_{j=0}^{k-1}(-1)^j\binom{n+1}{n+1-j}(k-j)^n
\\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j}(k-j)^n\bigg(-(k+1)\binom{n+1}{n-j}+(n+1-k)\binom{n+1}{n+1-j}\bigg)
\\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j}(k-j)^n\bigg(-(k+1)\times\frac{(n+1)!}{(n-j)!(j+1)!}+(n+1-k)\times\frac{(n+1)!}{(n+1-j)!j!}\bigg)
\\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j}(k-j)^n\frac{(n+1)!}{(n+1-j)!(j+1)!}\bigg(-(k+1)(n+1-j)+(n+1-k)(j+1)\bigg)
\\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j}(k-j)^n\frac{(n+1)!}{(n+1-j)!(j+1)!}\times (n+2)(j-k)
\\\\&=(k+1)^{n+1}+\sum_{j=0}^{k-1}(-1)^{j+1}(k-j)^{n+1}\binom{n+2}{j+1}
\\\\&=(k+1)^{n+1}+\sum_{j=0}^{\color{red}k}(-1)^{j+1}(k-j)^{n+1}\binom{n+2}{j+1}
\\\\&=(k+1)^{n+1}+\sum_{j=1}^{k+1}(-1)^{j}(k-j+1)^{n+1}\binom{n+2}{j}
\\\\&=\sum_{j=\color{red}0}^{k+1}(-1)^{j}(k-j+1)^{n+1}\binom{n+2}{j}
\\\\&=\sum_{j=0}^{k}(-1)^{j}(k-j+1)^{n+1}\binom{n+2}{j}
\\\\&=\sum_{j=0}^{k}(-1)^{j}(k-j+1)^{n+1}\binom{n+2}{n+2-j}
\\\\&=R(n+1,k).\ \blacksquare\end{align}$$