Here http://matwbn.icm.edu.pl/ksiazki/or/or2/or214.pdf Theorem IV.9.12 states the following criterion for a Banach space $E$ to be isomorphic to a Hilbert space, which can be thought as a generalization of the parallelogram law:
There exists a constant $A > 0$ such that $$A^{-1}\sum_{k = 1}^n \|x_k\|^2 \le \frac{1}{2^n}\sum_{\varepsilon_1, \dots, \varepsilon_n \in \{-1, 1\}}\|\sum_{k = 1}^n \varepsilon_k x_k\|^2 \le A\sum_{k = 1}^n \|x_k\|^2$$
for all finite collections $x_1, \dots, x_n \in E$.
I claim that this property holds for $E$ if it holds for all its separable closed subspaces. Let $A_L$ denote the infimum of the constants $A$ that satisfy the inequalities above for a separable subspace $L \subset E$. For a future reference we note that $L \subset N$ implies $A_L \le A_N$. Let $A = \sup_{L} A_L$, where $L$ ranges over all separable closed subspaces of $E$. If $A < +\infty$, then, clearly, it satisfies the inequalities above for the whole space $E$. Assume on the contrary that $A = +\infty$, so for all $n \in \mathbb N$ there exists separable $L_n$ such that $A_{L_n} \ge n$. If $$L = \overline{\mathrm{span}\left(\bigcup_n L_n\right)},$$
then $L$ is separable and $L_n \subset L$ for all $n$. Thus, $A_{L_n} \le A_L$, so $A_L \ge n$ for all $n \in \mathbb N$. We arrived at a contradiction.