$$\int_{\Bbb R}\frac{\ln(1+x^2)}{1+x^2}dx$$ Here is my attempt:
Consider $f(z):=\frac{z^2}{(1+z^2)(1+z^2y)},y\in(0,1)$ & $\Gamma : \gamma\;\bigcup\;(-R,R)$ is the anti-clockwise and semi-circular contour in the upper half of the $\Bbb C$-plane. $$\implies \oint_\Gamma\frac{z^2}{(1+z^2)(1+z^2y)}dz=\int_\gamma\frac{z^2}{(1+z^2)(1+z^2y)}dz+\int_{-R}^{+R}\frac{x^2}{(1+x^2)(1+x^2y)}dx$$ $$\because\int_Cf(z)dz=2\pi i\sum_k \text{Res}f(z=z_k)$$ Using Cauchy's Residue Theorem I took the limit $R\to\infty$: $$\lim_{R\to\infty}2\pi i\; \text{Res}f\left ( z=i,\frac{i}{\sqrt{y}},y\in(0,1) \right )=\underbrace{\lim_{R\to\infty}\int_\gamma\frac{z^2}{(1+z^2)(1+z^2y)}dz}_{=0\,,\;\because |z|\to\infty\implies zf(z)\to0}+\lim_{R\to\infty}\int_{-R}^{+R}\frac{x^2}{(1+x^2)(1+x^2y)}dx$$ $$\implies\int_{\Bbb R}\frac{x^2}{(1+x^2)(1+x^2y)}dx=2\pi i\lim_{z\to i}\frac{z^2\require{cancel}\cancel{(z-i)}}{\cancel{(z-i)}(z+i)(1+z^2y)}+\frac{2\pi i}{\sqrt{y}}\lim_{z\to i/\sqrt{y}}\frac{z^2\cancel{(z\sqrt{y}-i)}}{(1+z^2)\cancel{(z\sqrt{y}-i)}(z\sqrt{y}+i)}=-\frac{\pi}{1-y}+\frac{\pi}{(1-y)\sqrt{y}}\implies\int_{\Bbb R}\frac{x^2}{(1+x^2)(1+x^2y)}dx=\frac{\pi}{y+\sqrt{y}}$$ Now integrate both sides with respect to $y$ from $y=0$ to $y=1$ and we get: $$\implies\int_0^1\int_{\Bbb R}\frac{x^2}{(1+x^2)(1+x^2y)}dx\,dy=\pi\int_0^1\frac{dy}{y+\sqrt{y}}$$ $$\implies\int_{\Bbb R}\frac{1}{1+x^2}\int_0^1 d\ln(1+x^2y)dx=2\pi\int_0^1 d\ln(1+\sqrt{y})$$ $$\implies\color{red}{\int_{\Bbb R}\frac{\ln(1+x^2)}{1+x^2}dx=2\pi\ln(2)}$$ Does this seem correct? I would appreciate any help or different ways to go about solving this.
$$+2(q-1)!\sum_{k=1}^{\lfloor\frac{q}{2}\rfloor}\frac{|E_{2k-2}|}{(2k-2)!}\left(\frac{\pi}{2}\right)^{2k-1}\lambda(q-2k+2),$$
where $E$ is the Euler numbers and $\lambda(s)=(1-2^{-s})\zeta(s).$
– Ali Olaikhan Aug 25 '24 at 06:23