Let $\mathbf{A}$ $\in \mathbb{R}^{N \times N}$ be a real, invertible, symmetric matrix.
Let $\mathbf{Q}$ $\in \mathbb{R}^{N \times N}$ be a real, invertible matrix.
Let $\mathbf{X}$ $\in \mathbb{R}^{N \times N}$ be the solution to the Lyapunov equation in continuous time:
\begin{align*} \mathbf{X} \ = \ \int_{0}^\infty \mathrm{e}^{\mathbf{A}t} \ \mathbf{Q} \ \mathrm{e}^{\mathbf{A}t}\, dt \end{align*}
I am trying to take the derivative of a function of $\mathbf{X}$ with respect to some parameters $\mathbf{H}$, where values in $\mathbf{A}$ and $\mathbf{Q}$ are functions of $\mathbf{H}$. It is not clear to me how to proceed. I know I can write the derivative of the function via the product of Jacobians, but I don't know how to get past this part involving the Lyapunov solution.
I assume that I would need the Jacobians of $\mathbf{X}$ with respect to both $\mathbf{A}$ and $\mathbf{Q}$, i.e. in the forms
$\frac{\partial \text{vec}(\mathbf{X})}{\partial \text{vec}(\mathbf{A})}$ $\in \mathbb{R}^{N^2 \times N^2}$ and $\frac{\partial \text{vec}(\mathbf{X})}{\partial \text{vec}(\mathbf{Q})}$ $\in \mathbb{R}^{N^2 \times N^2}$.
Even if I had these quantities, I'm not sure how I would proceed. Would the differential of $\mathbf{X}$ be given by:
\begin{align*} d \mathbf{X} \ = \ \int_{0}^\infty \mathrm{e}^{d \mathbf{A}t} \ \mathbf{Q} \ \mathrm{e}^{d \mathbf{A}t}\, dt + \int_{0}^\infty \mathrm{e}^{\mathbf{A}t} \ d \mathbf{Q} \ \mathrm{e}^{\mathbf{A}t}\, dt \end{align*}
and I could proceed from there?