2

An old answer includes the following assertion (edited slightly for readability in this context):

If $A$ is a real symmetric matrix with all diagonal entries equal to 1 and all off-diagonal entries lying inside $[−1,1]$, is $\det(A) \leq 1?$ This is true for $n=2,3$ and false for $n=5$. It's probably true when $n=4$. but I haven't investigated the problem any further.

Running through these cases briefly:

  • This bound is indeed trivial for $n=2$, since $-1\leq x\leq 1$ ensures $\begin{vmatrix} 1 & x \\ x & 1\end{vmatrix}=1-x^2\leq 1$.

  • For $n=3$, note that

$$\begin{vmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1\end{vmatrix}=1-2xyz+x^2+y^2+z^2=1-(x-y z)^2-y^2-z^2(1-z^2)$$ which is clearly cannot exceed $1$ since none of the remaining terms can be positive.

  • For $n=4$, I haven't been able to come up with a proof but numerical experimentation (i.e., randomly generating many examples) suggests that the bound indeed holds.

  • For $n=5$, for any $x,y$ one has $$ \begin{vmatrix} 1 & 1 & 1 & -1 & 1 \\ 1 & 1 & x & y & -1 \\ 1 & x & 1 & 1 & 1 \\ -1 & y & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 \\ \end{vmatrix}=16>1 $$ So any $x,y\in[-1,1]$ yields a counterexample.

So, to state the question: Is $n=4$ the largest case for which $\det(A)\leq 1$ holds, and if so what changes when $n=5$?

River Li
  • 49,125
Semiclassical
  • 18,592

1 Answers1

3

Some thoughts.

Remark. The inequalities $F_1, F_2, F_3, F_4 \ge 0$ and $\frac75 c \ge b$ and $\frac75c \ge -b$ are all verified by Mathematica - a Computer Algebra System (CAS). I believe there are human verifiable proofs by repeatedly using Fact 2.

Let $$A := \begin{pmatrix} 1 & x_1 & x_2 & x_3 \\ x_1 & 1 & x_4 & x_5 \\ x_2 & x_4 & 1 & x_6 \\ x_3 & x_5 & x_6 & 1 \end{pmatrix}. $$ We need to prove that, for all $x_i \in [-1, 1]$, $i=1, 2, \cdots, 6$, \begin{align*} &1 - \det A\\ ={}&-x_1^2x_6^2 + 2x_1x_2x_5x_6 + 2x_1x_3x_4x_6 - x_2^2x_5^2 + 2x_2x_3x_4x_5 - x_3^2x_4^2 - 2x_1x_2x_4\\ &\qquad - 2x_1x_3x_5 - 2x_2x_3x_6 - 2x_4x_5x_6 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 \\ \ge{}& 0. \tag{1} \end{align*}

To proceed, we need the following auxiliary results (Facts 1 and 2).

Fact 1. Let $A_1, B_1, C_1$ be given real numbers. Then \begin{align*} &A_1x^2+B_1x+C_1 \ge 0, \quad \forall x\in [0,1]\\ \Longleftrightarrow \quad & \ A_1+B_1+C_1\ge 0, \quad C_1\ge 0, \quad B_1+2C_1 + 2\sqrt{(A_1+B_1+C_1)C_1} \ge 0. \end{align*}

Fact 2. Let $A, B, C$ be given real numbers. If
$A + B + C \ge 0, A - B + C \ge 0$, and $$2\sqrt{(A + B + C)(A - B + C)} + (-2A + 2C) \ge 0,$$ then $Ax^2 + Bx + C \ge 0$ for all $x\in [-1, 1]$.

Let us proceed. (1) is written as $$ax_6^2 + bx_6 + c \ge 0$$ where \begin{align*} a &:= 1 - x_1^2,\\ b &:= 2x_1x_2x_5 + 2x_1x_3x_4 - 2x_2x_3 - 2x_4x_5,\\ c &:= - x_2^2x_5^2 + 2x_2x_3x_4x_5 - x_3^2x_4^2 - 2x_1x_2x_4 - 2x_1x_3x_5 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2. \end{align*} Clearly, $a \ge 0$. We can prove that $c \ge 0$.

By Fact 2, it suffices to prove that $a + b + c \ge 0$, and $a-b+c \ge 0$, and $2\sqrt{(a+b+c)(a-b+c)} + (-2a+2c)\ge 0$.

  • (i) Prove that $a + b + c\ge 0$

We have \begin{align*} a + b + c &= \frac{1-x_1}{2} F_1 + \frac{1+x_1}{2}F_2 \end{align*} where \begin{align*} F_1 &= - x_2^2x_5^2 + 2x_2x_3x_4x_5 - x_3^2x_4^2 + x_2^2 - 2x_2x_3 + 2x_2x_4 - 2x_2x_5\\ &\qquad + x_3^2 - 2x_3x_4 + 2x_3x_5 + x_4^2 - 2x_4x_5 + x_5^2+1,\\ F_2 &= - x_2^2x_5^2 + 2x_2x_3x_4x_5 - x_3^2x_4^2 + x_2^2 - 2x_2x_3 - 2x_2x_4 + 2x_2x_5\\ &\qquad + x_3^2 + 2x_3x_4 - 2x_3x_5 + x_4^2 - 2x_4x_5 + x_5^2+1. \end{align*} It suffices to prove that $F_1 \ge 0, F_2 \ge 0$. True.

  • (ii) Prove that $a - b + c \ge 0$

We have $$a - b + c = \frac{1-x_1}{2} F_3 + \frac{1+x_1}{2}F_4$$ where \begin{align*} F_3 &= - x_2^2x_5^2 + 2x_2x_3x_4x_5 - x_3^2x_4^2 + x_2^2 + 2x_2x_3 + 2x_2x_4 + 2x_2x_5\\ &\qquad + x_3^2 + 2x_3x_4 + 2x_3x_5 + x_4^2 + 2x_4x_5 + x_5^2 + 1,\\ F_4 &= - x_2^2x_5^2 + 2x_2x_3x_4x_5 - x_3^2x_4^2 + x_2^2 + 2x_2x_3 - 2x_2x_4 - 2x_2x_5\\ &\qquad + x_3^2 - 2x_3x_4 - 2x_3x_5 + x_4^2 + 2x_4x_5 + x_5^2+1. \end{align*} It suffices to prove that $F_3 \ge 0, F_4 \ge 0$. True.

  • (iii) Prove that $2\sqrt{(a+b+c)(a-b+c)} + (-2a+2c)\ge 0$

Using $\sqrt{u} \ge u$ for all $u\in [0, 1]$, we have $$2\sqrt{(a+b+c)(a-b+c)} = 2(a + c)\sqrt{1 - b^2/(a+c)^2} \ge 2(a+c)(1 - b^2/(a+c)^2).$$ It suffices to prove that $$2(a+c)(1 - b^2/(a+c)^2) + (-2a+2c) \ge 0,$$ or $$2ac + 2c^2 -b^2 \ge 0.$$

Since $a, c \ge 0$, it suffices to prove that $2c^2 - b^2 \ge 0$, or $c\sqrt{2} \ge |b|$. Since $\sqrt{2} \ge \frac75$, it suffices to prove that $\frac75 c \ge |b|$, or $$\frac75c \ge b, \quad \frac75c \ge -b.$$ It is true.

We are done.

River Li
  • 49,125