The UMVUE is indeed $\overline{X}\overline{Y}$. First, note that $\mathbb{E}[\overline{X}\overline{Y}] = \mathbb{E}[\overline{X}]\mathbb{E}[\overline{Y}] = \mu_X\mu_Y$ by independence, so $\overline{X}\overline{Y}$ is at least an unbiased estimator for $\mu_X\mu_Y$.
To show that $\overline{X}\overline{Y}$ is UMVUE, we will apply the following theorem repeatedly.
Theorem 1: Let $T$ be an unbiased estimator of some parameter $\theta$. Then $T$ will be a UMVUE if and only if $T$ is uncorrelated with all unbiased estimators of zero.
To that end, suppose that $f(X,Y)$ is an unbiased estimator of zero. Let us define the marginal estimators
$$f_Y(Y) = \int f(X,Y)\ P(dX),\quad\text{and}\quad g_X(X) = \int \overline{Y}f(X,Y)\ Q(dY).$$
Then we have
$$
\mathbb{E}_{P,Q}[\overline{X}\overline{Y}f(X,Y)] = \int\int\overline{X}\overline{Y}f(X,Y)\ P(dX)Q(dY) = \int \overline{X}g_X(X)\ P(dX) = \mathbb{E}_P[\overline{X}g_X(X)].
$$
It follows that $\overline{X}\overline{Y}$ will be UMVUE if we can show that $g_X(X)$ is an unbiased estimator of zero whenever $f(X,Y)$ is. Calculating the expectation, we have
$$\mathbb{E}_P[g_X(X)] = \int g_X(X)\ P(dX) = \int\int \overline{Y}f(X,Y)\ P(dX)\,Q(dY) = \int \overline{Y}f_Y(Y)\ Q(dY) = \mathbb{E}_Q[\overline{Y}f_Y(Y)].$$
The last expectation is zero since $\overline{Y}$ is UMVUE by assumption, and $\mathbb{E}_{Q}[f_Y(Y)] = \mathbb{E}_{P,Q}[f(X,Y)] = 0$ so that $f_Y(Y)$ is an unbiased estimator of zero. It therefore follows that $\overline{X}\overline{Y}$ is a UMVUE for $\mu_X\mu_Y$.