Does ZF + "For all infinite sets $A$, there is a bijection between $A^3$ and $A^2$" imply AC?
Let $\aleph(A)$ be the least ordinal that does not inject into $A$. I know $|A+\aleph(A)|=|A\times\aleph(A)|$ implies $A$ can be well ordered.
I got \begin{align}&|(A+\aleph(A))^2|\\ =&|(A+\aleph(A))^3|\\ =&|A^3+3\times A^2\times\aleph(A)+3\times A\times\aleph(A)^2+\aleph(A)^3|\\ =&|A^2+A^2\times\aleph(A)+A\times\aleph(A)+\aleph(A)|\\ \le&|4\times A^2\times\aleph(A)|\\ =&|A^2\times\aleph(A)|\\ \le&|A^2+A^2\times\aleph(A)+A\times\aleph(A)+\aleph(A)|\end{align} Since $|\aleph(A)|=|\aleph(A)^2|$, $|(A+\aleph(A))^2|=|A^2\times\aleph(A)|=|A^2\times\aleph(A)^2|=|(A\times\aleph(A))^2|$. This is almost what I need. But I don't know if this approach will work or if the statement I am trying to prove is even true.