Let $X$ and $Y$ be independent circularly symmetric gaussian random variables with mean $0$ and unit variance. In this paper, it is proved that the law of $Z = Y/X$ has the density of the form
$$ f_Z(z) = \frac{1}{\pi(1 + |z|^2)^2}, \qquad z \in \mathbb{C}. $$
Now, let $X = A + iD$ and $Y = C + iB$ so that $A, B, C, D$ are IID standard normal variables and
$$ V
:= \frac{AB - CD}{A^2 + B^2 + C^2 + D^2}
= \frac{\operatorname{Im}(\overline{X}Y)}{|X|^2 + |Y|^2}
= \frac{\operatorname{Im}(Y/X)}{1 + |Y/X|^2}. $$
Then the moment-generating function of $V$ is given by
\begin{align*}
\mathbb{E}[e^{\xi V}]
&= \int_{0}^{\infty} \mathrm{d}r \int_{-\pi}^{\pi} \mathrm{d}\theta \, \frac{r}{\pi(1 + r^2)^2} \exp\biggl( \xi \frac{r \sin \theta}{1 + r^2} \biggr) \\
&= \frac{1}{4\pi} \int_{0}^{\pi} \mathrm{d}\psi \int_{-\pi}^{\pi} \mathrm{d}\theta \, (\sin \psi)\exp\biggl( \frac{\xi}{2}\sin\theta\sin\psi \biggr) \tag{$r=\tan(\psi/2)$} \\
&= \frac{1}{4\pi} \sum_{n=0}^{\infty} \frac{(\xi/2)^n}{n!} \int_{0}^{\pi} \mathrm{d}\psi \int_{-\pi}^{\pi} \mathrm{d}\theta \, (\sin\theta)^n (\sin\psi)^{n+1}.
\end{align*}
By using the symmetry of the sine function and the beta function identity (or by integration by parts combined with mathematical induction), it is not hard to check that
$$ \int_{0}^{\pi} \mathrm{d}\psi \int_{-\pi}^{\pi} \mathrm{d}\theta \, (\sin\theta)^n (\sin\psi)^{n+1}
= \begin{cases}
\frac{4\pi}{n+1}, & \text{$n$ is even}, \\
0, & \text{$n$ is odd}.
\end{cases}$$
Therefore
\begin{align*}
\mathbb{E}[e^{\xi V}]
= \sum_{k=0}^{\infty} \frac{(\xi/2)^{2k}}{(2k+1)!}
= \frac{\sin(\xi/2)}{\xi/2}
= \int_{-\frac{1}{2}}^{\frac{1}{2}} \mathrm{d}v \, e^{\xi v}.
\end{align*}
Therefore it follows that
$$ f_V(v) = \mathbf{1}_{[-\frac{1}{2}, \frac{1}{2}]}(v), $$
or equivalently, the law of $V$ is the uniform distribution over $[-\frac{1}{2}, \frac{1}{2}]$.