The equation of the right circular cone using vector-matrix notation is
$ r^T Q r = 0 \tag{1} $
where
$ r = [x,y,z]^T $
and
$Q = \begin{bmatrix} \cos^2 \theta && 0 && 0 \\ 0 && \cos^2 \theta && 0 \\ 0 && 0 && - \sin^2 \theta \end{bmatrix} $
The plane can be written in explicit form as
$ r = r_0 + V u \tag{2}$
where
$ V = \begin{bmatrix} \cos \phi && 0 \\ 0 && 1 \\ \sin \phi && 0 \end{bmatrix} $
and $ u = [u_1, u_2]^T $
Substituting $(2)$ into $(1)$ gives
$ (r_0 + V u)^T Q (r_0 + V u) = 0 $
Expanding,
$ u^T V^T Q V u + 2 u^T V^T Q r_0 + r_0^T Q r_0 = 0 \tag{3} $
Evaluating the above matrices, we have
$ V^T Q = \begin{bmatrix} \cos \phi \cos^2 \theta && 0 && - \sin \phi \sin^2 \theta \\ 0 && \cos^2 \theta && 0 \end{bmatrix}$
$V^T Q V = \begin{bmatrix} \cos^2 \phi \cos^2 \theta - \sin^2 \phi \sin^2 \theta && 0 \\ 0 && \cos^2 \theta \end{bmatrix} \tag{4}$
$ V^T Q r_0 = z_0 \begin{bmatrix} - \sin \phi \sin^2 \theta \\ 0 \end{bmatrix} $
$ r_0^T Q r_0 = - z_0^2 \sin^2 \theta $
Now define $ u_0 = - \dfrac{1}{2} (V^T Q V)^{-1} V^T Q r_0 $ to be the center of the conic.
Then
$u_0 = - z_0 \begin{bmatrix} \dfrac{1}{\cos^2 \phi \cos^2 \theta - \sin^2 \phi \sin^2 \theta} && 0 \\ 0 && \dfrac{1}{\cos^2 \theta} \end{bmatrix} \begin{bmatrix} - \sin \phi \sin^2 \theta \\ 0 \end{bmatrix} = \begin{bmatrix} \dfrac{ z_0 \sin \phi \sin^2 \theta }{\cos^2 \phi \cos^2 \theta - \sin^2 \phi \sin^2 \theta} \\ 0 \end{bmatrix}$
Now, equation $(3)$ becomes
$ (u - u_0)^T (V^T Q V) (u - u_0) = - r_0^T Q r_0 + u_0^T (V^T Q V) u_0 $
We now have
$ u_0^T (V^T Q V) u_0 = \dfrac{ z_0^2 \sin^2 \phi \sin^4 \theta }{\cos^2 \phi \cos^2 \theta - \sin^2 \phi \sin^2 \theta} $
So that
$ - r_0^T Q r_0 + u_0^T (V^T Q V) u_0 = \dfrac{ z_0^2 \cos^2 \phi \cos^2 \theta \sin^2 \theta }{\cos^2 \phi \cos^2 \theta - \sin^2 \phi \sin^2 \theta} \tag{5}$
From $(4), (5)$, it follows that the semi-axes are
$\text{Major Axis:} $
$ a = \dfrac{ z_0 \cos \phi \cos \theta \sin \theta }{\cos^2 \phi \cos^2 \theta - \sin^2 \phi \sin^2 \theta} =\dfrac{ z_0 \cos \phi \tan \theta }{ 1 - \sec^2 \theta \sin^2 \phi} $
$\text{Minor Axis:}$
$ b = \dfrac{ z_0 \cos \phi \sin \theta }{\sqrt{ \cos^2 \phi \cos^2 \theta - \sin^2 \phi \sin^2 \theta } } =\dfrac{ z_0 \cos \phi \tan \theta}{ \sqrt{ 1 - \sec^2 \theta \sin^2 \phi} }$