Assume $R$ is an integrally closed ring (in my case: an integral domain), and $r\in\mathbb{N}$.
One can view $\operatorname{End}(R^{n})=\operatorname{Mat}_{n\times n}(R)$ as a submodule of $\operatorname{End}(R^{2n})$ via the inclusion
\begin{equation*} \mu:\left(\begin{matrix}a_{1,1} & ... & a_{1,n}\\ ... & & ...\\ a_{n,1} & ... & a_{n,n}\end{matrix}\right)\longmapsto \left(\begin{matrix}A_{1,1} & ... & A_{1,n}\\ ... & & ...\\A_{n,1} & ... & A_{n,n}\end{matrix}\right)\text{.} \end{equation*}
where $A_{i,j}=\left(\begin{matrix}a_{i,j} & 0\\0 & a_{i,j}\end{matrix}\right)$.
Is $\operatorname{End}(R^{n})$ quadratically closed in $\operatorname{End}(R^{2n})$? By that I mean, is there for any $d\in\operatorname{End}(R^{n})$ an $e\in\operatorname{End}(R^{2n})$ so that $e^{2}=d$? Does for any such $d$ the map $\mu$ extend to a map $\operatorname{End}(R^{n})[t]/(t^{2}-d)\longrightarrow\operatorname{End}(R^{2n})$?
More generally: Is $\operatorname{End}(R^{n})$ closed in $\operatorname{End}(R^{mn})$ with respect to taking $m$th roots?
What happens if I allow for $n=\aleph_{0}$?