Multiple approaches come to mind. The generating function for the Fibonnaci numbers under the definition
$$
F_0=0,\;\;\;\;F_1=1,\;\;\;\;F_{n+2}=F_{n+1}+F_n
$$
is
$$
\sum_{n=0}^\infty F_nx^n=\frac{x}{1-x-x^2}
$$
We can cancel all of the odd terms by performing
$$
\sum_{n=0}^\infty F_{2n}x^{2n}=\frac{1}{2}\left(\sum_{n=0}^\infty F_nx^n+\sum_{n=0}^\infty F_n(-x)^n\right) \\
=\frac{1}{2}\left(\frac{x}{1-x-x^2}-\frac{x}{1+x-x^2}\right)=\frac{x^2}{1-3x^2+x^4}
$$
Replacing $x^2\to x$,
$$
\sum_{n=0}^\infty F_{2n}x^n=\frac{x}{1-3x+x^2}
$$
We multiply by $x$ and differentiate to get
$$
\sum_{n=0}^\infty(n+1)F_{2n}x^n=\frac{d}{dx}\left[\frac{x^2}{1-3x+x^2}\right]=\frac{2x-3x^2}{(1-3x+x^2)^2}
$$
Noting $F_0=0$, we drop the first term and multiply by $x$ to get
$$
\sum_{n=1}^\infty(n+1)F_{2n}x^{n+1}=\frac{2x^2-3x^3}{(1-3x+x^2)^2}
$$
This is your general form, and note that $x=1/3$ recovers that the sum is $9$.