2

Doing some reading when I come across this: " ...clearly $$\sum_{n=1}^{\infty}\frac{(n+1)F_{2n}}{3^{n+1}} = 9$$ where $F_n$ is the nth Fibonacci number evaluates to $9$. We derive this solution from the general case $\sum_{n=1}^{\infty}(n+1)F_{2n}x^{n+1}$ where the general solution is left as an exercise."

Does anyone know how to approach sums of this form?

Mako
  • 718
HG11
  • 123
  • 1
    That sum is over even Fibonacci numbers, not odd. In any case, this is essentially a geometric sum, if you don't want to rely on the generating function. – lulu Jul 18 '24 at 17:02
  • Related: https://math.stackexchange.com/q/3730708/42969 – Martin R Jul 18 '24 at 17:31

2 Answers2

6

Multiple approaches come to mind. The generating function for the Fibonnaci numbers under the definition

$$ F_0=0,\;\;\;\;F_1=1,\;\;\;\;F_{n+2}=F_{n+1}+F_n $$

is

$$ \sum_{n=0}^\infty F_nx^n=\frac{x}{1-x-x^2} $$

We can cancel all of the odd terms by performing

$$ \sum_{n=0}^\infty F_{2n}x^{2n}=\frac{1}{2}\left(\sum_{n=0}^\infty F_nx^n+\sum_{n=0}^\infty F_n(-x)^n\right) \\ =\frac{1}{2}\left(\frac{x}{1-x-x^2}-\frac{x}{1+x-x^2}\right)=\frac{x^2}{1-3x^2+x^4} $$

Replacing $x^2\to x$,

$$ \sum_{n=0}^\infty F_{2n}x^n=\frac{x}{1-3x+x^2} $$

We multiply by $x$ and differentiate to get

$$ \sum_{n=0}^\infty(n+1)F_{2n}x^n=\frac{d}{dx}\left[\frac{x^2}{1-3x+x^2}\right]=\frac{2x-3x^2}{(1-3x+x^2)^2} $$

Noting $F_0=0$, we drop the first term and multiply by $x$ to get

$$ \sum_{n=1}^\infty(n+1)F_{2n}x^{n+1}=\frac{2x^2-3x^3}{(1-3x+x^2)^2} $$

This is your general form, and note that $x=1/3$ recovers that the sum is $9$.

Josh B.
  • 3,227
  • 8
  • 14
1

Hint:

Like Prove that for every $ n \in \mathbb{N} \cup \{0\}$, $F_{n+5} + 2F_n$ is divisible by $5$.

and using How can I evaluate $\sum_{n=0}^\infty(n+1)x^n$?,

$$S_\infty=-(0+1)F_0x^0+\sum_{n=0}^\infty(n+1)F_{2n}x^n=\dfrac{\sum_{n=0}^\infty(n+1)(a^2x)^n-\sum_{n=0}^\infty(n+1)(b^2x)^n}{a-b}$$ where $a,b(a>b)$ are the roots of $t^2-t-1=0\implies a+b=1,ab=-1$

If $|a^2x|,|b^2x|<1,$

$$S_\infty=\dfrac{\dfrac1{(1-a^2x)^2}-\dfrac1{(1-b^2x)^2}}{a-b} =\dfrac{(1-b^2x)^2-(1-a^2x)^2}{(a-b)(1-(a^2+b^2)x+x^2(ab)^2)^2}$$

Now $(1-b^2x)^2-(1-a^2x)^2=x(a-b)(a+b)(2-(a^2+b^2)x)$

Finally cancel out $a-b(\ne0)$ and replace the values of $a+b,ab,a^2+b^2=(a+b)^2-2ab=?$