I want to prove the following.
Let $I:=[a,b)$ be finite interval, $f$ is completely monotone on $I$. Then it can be extended analytically into the complex z-plane ($z=x+iy$), and the function $f(z)$ will be analytic in the circle $|z-a|<b-a$.
Here is what I started. By Taylor's formula for every $a\leq x<b$ we have \begin{equation*} f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k+ (-1)^{n+1}\int_{a}^x \frac{(-1)^{n+1}f^{(n+1)}(t)}{n!}(x-t)^{n}dt. \end{equation*} Here \begin{equation*} R_n(x):=\int_{a}^x \frac{(-1)^{n+1}f^{(n+1)}(t)}{n!}(x-t)^{n}dt. \end{equation*} Since $(-1)^{n+1}f^{(n+1)}(t)\geq 0$ and $(-1)^{n+1}f^{(n+1)}$ is monotone decreasing we obtain \begin{equation*} 0\leq R_n(x)\leq \frac{(-1)^{n+1}f^{(n+1)}(a)}{(n+1)!}. \end{equation*}
I don't know how to finish the proof, assuming that it can be finished at all.