0

Let the function $d \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by $$ d\big( (x, y) \big) := \lvert x-y \rvert \qquad \mbox{ for all } (x, y) \in \mathbb{R}^2. $$ Let $\mathbb{R}$ and $\mathbb{R}^2$ have their usual topologies. Then how to show that this function $d$ is continuity by showing that the inverse image of every basic open set in the co-domain space $\mathbb{R}$ is an open set in the domain space $\mathbb{R}^2$?

My Attempt:

Let $u$ and $v$ be any real numbers such that $u < v$, and let us put $$ ] u, v[ := \{ r \in \mathbb{R} \colon u < r < v \}. $$ Then we have $$ \begin{align} d^{-1} \big( ]u, v[ \big) &= \left\{ (x, y) \in \mathbb{R}^2 \colon d \big( (x, y) \big) \in ]u, v[ \right\} \\ &= \left\{ (x, y) \in \mathbb{R}^2 \colon u < d\big( (x, y) \big) < v \right\} \\ &= \left\{ (x, y) \in \mathbb{R}^2 \colon u < \lvert x-y \rvert < v \right\} \\ &= \begin{cases} \left\{ (x, y) \in \mathbb{R}^2 \colon 0 \leq \lvert x-y \rvert < v \right\} \ \mbox{ if } u < 0 \\ \left\{ (x, y) \in \mathbb{R}^2 \colon u < \lvert x-y \rvert < v \right\} \ \mbox{otherwise} \end{cases} . \end{align} $$

How to proceed from here?

Of course, there are other, perhaps easier, proofs of this result using the methods of advanced calculus (i.e. elementary real analysis), but I would like to do it using these elementary and purely topological methods.

PS:

Based on the advice offered in the comments below, I proceed as follows:

Thus we have \begin{align} & \ \ \ d^{-1} \big( ]u, v[ \big) \\ &= \begin{cases} \left\{ (x, y) \in \mathbb{R}^2 \colon 0 \leq \lvert x-y \rvert < v \right\} \ \mbox{ if } u < 0 \\ \left\{ (x, y) \in \mathbb{R}^2 \colon u < \lvert x-y \rvert < v \right\} \ \mbox{otherwise} \end{cases} \\ &= \begin{cases} \bigcup_{x \in \mathbb{R} } \left\{ (x, y) \in \mathbb{R}^2 \colon -v < x-y < v \right\} \ \mbox{ if } u < 0 \\ \bigcup_{x \in \mathbb{R} } \left[ \left\{ (x,y) \in \mathbb{R}^2 \colon u < x-y < v \right\} \cup \left\{ (x, y) \in \mathbb{R}^2 \colon -v < x-y < -u \right\} \right] \ \mbox{ otherwise} \end{cases} \\ &= \begin{cases} \bigcup_{x \in \mathbb{R} } \left\{ (x, y) \in \mathbb{R}^2 \colon -v < y-x < v \right\} \ \mbox{ if } u < 0 \\ \bigcup_{x \in \mathbb{R} } \left[ \left\{ (x, y) \in \mathbb{R}^2 \colon -v < y-x < -u \right\} \cup \left\{ (x, y) \in \mathbb{R}^2 \colon u < y-x < v \right\} \right] \ \mbox{ otherwise} \end{cases} \\ &= \begin{cases} \bigcup_{x \in \mathbb{R} } \left\{ (x, y) \in \mathbb{R}^2 \colon x-v < y < x+v \right\} \ \mbox{ if } u < 0 \\ \bigcup_{x \in \mathbb{R} } \left[ \left\{ (x, y) \in \mathbb{R}^2 \colon x-v < y < x-u \right\} \cup \left\{ (x, y) \in \mathbb{R}^2 \colon x+u < y < x+v \right\} \right] \ \mbox{ otherwise} \end{cases} \\ &= \begin{cases} \bigcup_{x \in \mathbb{R} } \{ x \} \times ]x-v, x+v[ \ \mbox{ if } u < 0 \\ \bigcup_{x \in \mathbb{R} } \big[ \big( \{ x \} \times ] x-v, x-u [ \big) \cup \big( \{ x \} \times ] x+u, x+v [ \big) \big] \ \mbox{ otherwise}. \end{cases} \end{align}

Is what I've done so far correct in each and every detail? If so, then what next? How to proceed from here?

Or, are there any mistakes or errors in what I've done up to now?

  • 4
    It is far easier to prove that subtraction and absolute value are continuous, and that the composition of continuous functions is continuous. – MPW Jul 16 '24 at 18:30
  • 1
    Write your sets as unions indexed on $x$. – Iq-n-dI Jul 16 '24 at 18:32
  • Try fixing $x \in \mathbb R$ then drawing the sets ${y \in \mathbb{R} : 0 \leq |x - y| < v}$ and ${y \in \mathbb{R} : u < |x - y| < v}$. Then it shouldn't be too hard from there to see what kind of open sets these are, after which you can take the union over all $x \in \mathbb{R}$ to see that the sets in your last equality are open in $\mathbb{R}^2$. – Alex Pawelko Jul 16 '24 at 18:36
  • 1
    You won't be able to prove the function is continuous using "purely topological" methods, since the definition of $d$ involves the algebraic structure of $\Bbb R$. – jjagmath Jul 16 '24 at 20:49

0 Answers0