Show that $$\int^1_0 x^{m-1}\ln^2(1-x)dx=\frac{2}{m}\sum_{k=1}^m\frac{H_{k}}{k}$$
We know: $$\ln(1-x)=-\sum^{\infty}_{n=1}\frac{x^n}{n}$$ and using cauchy product Therfore: $$\begin{align*} \ln^2(1-x)&=\sum_{n=1}^{\infty}x^{n+1}\sum_{k=1}^n\frac{1}{k(n-k+1)}\\ &=\sum^{\infty}_{n=1}\frac{x^{n+1}}{n+1}\sum_{k=1}^n\frac{1}{k}+\frac{1}{n-k+1}\\ &=2\sum_{n=1}^{\infty}\frac{x^{n+1}}{n+1}H_n \end{align*}$$
then: $$\begin{align*} \int^1_0 x^{m-1}\ln^2(1-x)dx&=2\int^1_0\sum_{n=1}^{\infty}\frac{x^{n+m}}{n+1}H_n\\ &=2\sum_{n=1}^{\infty}\frac{H_n}{(n+m+1)(n+1)}\\ &=\frac{2}{m}\sum_{n=1}^{\infty}\frac{H_n}{(n+1)}-\frac{H_n}{(n+m+1)} \end{align*}$$
How can I follow up on the solution? Thank you for your attention