$$I(t)=\int_{0}^{\frac{\pi}{2}} \frac{\ln(1-t\sin x)}{sin x} \,dx$$
$$-\frac{dI(t)}{dt}=\int_{0}^{\frac{\pi}{2}} \frac{1}{1-tsin x} \,dx$$
Let's consider;
$$J(a,b)=\int \frac{1}{a+bsin x} \,dx=\frac{2 \arctan\left(\frac{a \tan\left(\frac{x}{2}\right) + b}{\sqrt{a^{2} - b^{2}}}\right)}{\sqrt{a^{2} - b^{2}}}+C$$
Using the Weierstrass substitution(as mentioned in the comments), we can solve the above integral (and a substitution for $\tan\frac{x}{2}=t$ then factoring the quadratic formed in the latter steps, i'm avoiding the proof)
Applying $a=1, b=-t$
$$J(1,-t)=\int \frac{1}{1-tsin x} \,dx=\frac{2 \arctan\left(\frac{ \tan\left(\frac{x}{2}\right) -t}{\sqrt{1-t^2}}\right)}{\sqrt{1-t^2}}+C$$
Applying the bounds;
$$J(1,-t)|_0^{\frac{\pi}{2}}=\frac{2}{\sqrt{1-t^2}}\left(tan^{-1}\left(\frac{1-t}{\sqrt{1-t^2}}\right)-tan^{-1}\left(\frac{-t}{\sqrt{1-t^2}}\right)\right)$$
$$\frac{dI(t)}{dt}=\frac{2}{\sqrt{1-t^2}}\left(tan^{-1}\left(\frac{-t}{\sqrt{1-t^2}}\right)-tan^{-1}\left(\frac{1-t}{\sqrt{1-t^2}}\right)\right)$$
$$\int\,dI(t)=\int \frac{2}{\sqrt{1-t^2}}tan^{-1}\left(\frac{-t}{\sqrt{1-t^2}}\right)\,dt-\int \frac{2}{\sqrt{1-t^2}}tan^{-1}\left(\frac{1-t}{\sqrt{1-t^2}}\right)\,dt$$
$$I(t)=2tan^{-1}\left(\frac{\sqrt{1-t}}{\sqrt{1+t}}\right)^2-tan^{-1}\left(\frac{-t}{\sqrt{1-t^2}}\right)^2+c$$
$$\boxed{I(0)=0\implies t=0, I(t)=0}$$
$$I(t)=2tan^{-1}\left(\frac{\sqrt{1-t}}{\sqrt{1+t}}\right)^2-tan^{-1}\left(\frac{-t}{\sqrt{1-t^2}}\right)^2-\frac{\pi^2}{8}$$
$$\boxed{\int_0^{\frac{\pi}{2}}\frac{ln(1-sinx)}{sinx}\,dx=\frac{-3\pi^2}{8}\approx -3.7011}$$
which agrees with this