Here is a way to consider the situation using a Markov chain with the states
$0,1,2,3,4,5,6,7,8,9,T$. (We use $T$ instead of $10$ for the last terminal state for an easy typing.)
Also let $q=1-p$ as usual.
A picture of this chain is:
$$
\overset 1\circlearrowleft
\boxed 0
\underset {\color{red}{0}}{\overset q{\leftrightarrows}} 1
\underset p{\overset q{\leftrightarrows}} 2
\underset p{\overset q{\leftrightarrows}} 3
\underset p{\overset q{\leftrightarrows}} 4
\underset p{\overset q{\leftrightarrows}} 5
\underset p{\overset q{\leftrightarrows}} 6
\underset p{\overset q{\leftrightarrows}} 7
\underset p{\overset q{\leftrightarrows}} 8
\underset p{\overset q{\leftrightarrows}} 9
\underset p{\overset {\color{red}{0}}{\leftrightarrows}} \boxed T
\underset 1\circlearrowleft
\ .
$$
The transition matrix $A$ and the initial distribution $e_5$ for given situation are:
$$
e_5=
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\ ,\qquad
A=
\begin{bmatrix}
1\\
q&0&p\\
&q&0&p\\
&&q&0&p\\
&&&q&0&p\\
&&&&q&0&p\\
&&&&&q&0&p\\
&&&&&&q&0&p\\
&&&&&&&q&0&p\\
&&&&&&&&q&0&p\\
&&&&&&&&&&1\\
\end{bmatrix}
\ .
$$
Let $e_k$ be the row vector with only one $1$ entry for the position $k$. Then for instance $e_0A=e_0$, $e_TA=e_T$, so once in a terminal state ($0$ or $T$) at the next step (corresponding to multiplication by A$) we are also there.
Question 1 can now be answered, after $n$ turns the distribution probability is
$$
e_5A^n\ .
$$
For instance, after $10$ turns, in case of a fair coin, $p=q=1/2$ we have
$$
e_5A^{10}
=
\left[0\,0\,0\,0\,0\,1\,0\,0\,0\,0\,0\right]
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}^{10}
\\
=
\begin{bmatrix}
\frac{7}{64} & \frac{75}{1024} & 0 & \frac{25}{128} & 0 & \frac{125}{512} & 0 & \frac{25}{128} & 0 & \frac{75}{1024} & \frac{7}{64}
\end{bmatrix}
\ .
$$
There is even in this case no simple formula, for instance:
$$
\begin{aligned}
e_5A^{20}
&=
\begin{bmatrix}
\frac{137769}{524288} & \frac{11875}{262144} & 0 & \frac{124375}{1048576} & 0 & \frac{76875}{524288} & 0 & \frac{124375}{1048576} & 0 & \frac{11875}{262144} & \frac{137769}{524288}
\end{bmatrix}\ ,
\\
e_5A^{50}
&=\tiny
\begin{bmatrix}
\frac{251838013820031}{562949953421312} & \frac{353759765625}{35184372088832} & 0 & \frac{29636962890625}{1125899906842624} & 0 & \frac{18316650390625}{562949953421312} & 0 & \frac{29636962890625}{1125899906842624} & 0 & \frac{353759765625}{35184372088832} & \frac{251838013820031}{562949953421312}
\end{bmatrix}
\ .
\end{aligned}
$$
For a general formula we need to diagonalize $A$. In case $p=q=1/2$ the diagonal part has as elements the roots of the characteristic polynomial of $A$, which is:
$$
x (x - 1)^{2}
\left(x^{2} - \frac{1}{2} x - \frac{1}{4}\right)
\left(x^{2} + \frac{1}{2} x - \frac{1}{4}\right)
\left(x^{4} - \frac{5}{4} x^{2} + \frac{5}{16}\right)
\ .
$$
Let us look now at Question 2, which has the following simple way to attack. It is the same as in the answer of Lee Fisher, well, i am trying to solve the associated linear algebra problem as simple as possible.
Denote by $x_k$ the average number of steps to reach a terminal state ($0$ or $10=T$) when starting in $k$.
Then of course $x_0=0$, $x_T=0$, and else we have the linear system:
$$
\left\{
\begin{aligned}
x_1 &= 1\color{gray}{+qx_0}+px_2\ ,\\
x_2 &= 1+qx_1+px_3\ ,\\
x_3 &= 1+qx_2+px_4\ ,\\
x_4 &= 1+qx_3+px_5\ ,\\
x_5 &= 1+qx_4+px_6\ ,\\
x_6 &= 1+qx_5+px_7\ ,\\
x_7 &= 1+qx_6+px_8\ ,\\
x_8 &= 1+qx_7+px_9\ ,\\
x_9 &= 1+qx_8\color{gray}{+px_T}\ .
\end{aligned}
\right.
$$
Let $E_k$ be the equation for $x_k$. It has the following interpretation.
Since $k$ is not terminal, there is at least one step till the end.
After this one step we land in $k\pm1$ with probabilities $p,q$ (for $+$ and $-$ respectively), and from there we have in average $x_{k\pm1}$ steps.
To eliminate $x_1$ we do the following. Consider the first two equations, $E_1,E_2$. $x_1$ appears in them and only in them (on different sizes). Multiply the first equation, $E_1$ by $q$. Add them, $qE_1$ and $E_2$. Then $x_1$ is eliminated. (Do the same at the end, build $E_8$, $pE_9$, and add them.) In the result $qE_1+E_2$ look at the coefficient of $x_2$, then also in $E_3$. It turns out that we have to use the factors $q$, and $(1-pq)$. In terms of $E_1,E_2,E_3$ we thus use the factors $q^2,q,(1-pq)$. (Do the same at the end using the factors $p^2,p,(1-pq)$ for $E_9,E_8,E_7$.
This process continues two more steps, because of the symmetry, and we already obtain $x_5$, all other variables are eliminated. Explicitly:
We multiply all
the above equations $E_1,E_2,E_3,E_4,E_5,E_6,E_7, E_8,E_9$ respectively by
$$
q^4,\ q^3,\ q^2(1-pq),\ q(1-2pq),\ \boxed{\ 1-3pq+p^2q^2\ },\
p(1-2pq),\ p^2(1-pq),\ p^3,\ p^4\ .
$$
Then we add.
Only $x_5$ survives.
And the equation in $x_5$ is:
$$
(1-3pq+p^2q^2)x_5 =
(p^4+q^4)+(p^3+q^3)+(p^2+q^2)(1-pq)+(p+q)(1-2pq)+(1-3pq+p^2q^2)
+
2pq(1-2pq)x_5\ .
$$
(It is a symmetric formula in $p,q$.)
A first simplification is
$$
(1-5pq+5p^2q^2)x_5 =
((1-2pq)^2-2p^2q^2)+(1-3pq)+(1-2pq)(1-pq)+(1-2pq)+(1-3pq+p^2q^2)\ ,
$$
and it gives a formula for $x_5$ as a fraction using only terms in $1,pq,p^2q^2$:
$$
x_5=\frac
{5(1-3pq+p^2q^2)}
{1-5pq+5p^2q^2}\ .
$$
It is not "homogeneous" in $p,q$, but if we want such a formula, we may
replace $1$ by $1^4=(p+q)^4$ and $pq$ by $pq(p+q)^2$ to obtain
$$
x_5=
5\cdot\frac
{p^4+p^3q+p^2q^2+p^3q+q^4}
{p^4-p^3q+p^2q^2-p^3q+q^4}
=
5\cdot\frac
{(p^5-q^5)/(p-q)}
{(p^4+q^5)/(p+q)}
\ .
$$
Computer simulation:
I am using sage. $10^5$ trials. Lazy implementation. Fair coin.
import random
N = 10^5
steps = 0 # so far, but we add
for trial in range(N):
state = 5
while state not in (0, 10):
state += random.choice([-1, +1])
steps += 1
print(f"Average number of steps this time: {(steps/N).n()}")
And the result is:
Average number of steps this time: 24.9387600000000
which is consistent with the formula
$$
x_5=
5\cdot\frac
{p^4+p^3q+p^2q^2+p^3q+q^4}
{p^4-p^3q+p^2q^2-p^3q+q^4}
\ .
$$
(Inserting $p=q$ leads to $X_5=5\cdot\frac{1+1+1+1+1}{1-1+1-1+1}$.)