The function $\cos^{-1}(v)$ is decreasing and always returns values between $0$ and $\pi$. This second fact tells us that if we want to use $\cos^{-1}(\cos x) = x$, then we need to have $x \in [0, \pi]$.
Suppose $x \in [0, \pi]$. Since applying a decreasing function to both sides of an inequality reverses the inequality, we have
$$
\cos x \le v \quad\text{iff}\quad x \ge \cos^{-1} v.
$$
On the other hand, suppose $x \in [\pi, 2\pi]$. Then $\cos x = \cos(2\pi - x)$ and $2\pi - x \in [0, \pi]$. Therefore, in this case,
\begin{align*}
\cos x \le v &\quad\text{iff}\quad \cos(2\pi - x) \le v\\
&\quad\text{iff}\quad 2\pi - x \ge \cos^{-1} v\\
&\quad\text{iff}\quad x \le 2\pi - \cos^{-1} v.
\end{align*}
We therefore have, for any $v \in [-1, 1]$,
\begin{align*}
P(V \le v) &= P(\cos 2\pi U \le v)\\
&= P(\cos 2\pi U \le v, U \le 1/2) + P(\cos 2\pi U \le v, U > 1/2)\\
&= P\left({U \ge \frac1{2\pi}\,\cos^{-1} v, U \le 1/2}\right)
+ P\left({U \le 1 - \frac1{2\pi}\,\cos^{-1} v, U > 1/2}\right)\\
&= \left({\frac12 - \frac1{2\pi}\,\cos^{-1} v}\right)
+ \left({1 - \frac1{2\pi}\,\cos^{-1} v - \frac12}\right)\\
&= 1 - \frac1\pi\,\cos^{-1} v.
\end{align*}
Differentiating gives
$$
f_V(v) = \frac1{\pi \sqrt{1 - v^2}},
$$
for $v \in (-1, 1)$.