I am stuck on the derivation of the identity in the title which is used in step three and four in the proof of
The Unique Solutions to Linear Nonhomogeneous Systems of First Order ODEs.
It is used in step three/four. Correct me if I am wrong.
Theorem 1
Let $\mathbf{x}^{\prime}=A(t) \mathbf{x}+g(t)$ with $\mathbf{x}(\tau)=\xi$ be a linear nonhomogeneous system of first order ODEs where $(\tau, \xi) \in D$, and let $\Phi(t, \tau)$ be the state transition matrix of the corresponding linear homogeneous system of first order ODEs $\mathbf{x}^{\prime}=A(t) \mathbf{x}$ with $\mathbf{x}(\tau)=\xi$. Then the unique solution to the linear nonhomogeneous system is given by $\varphi(t)=\Phi(t, \tau) \xi+\int_\tau^t \Phi(t, \tau) g(\eta) d \eta$.
Proof:
Let $\varphi(t)=\Phi(t, \tau) \xi+\int_\tau^t \Phi(t, \tau) g(\eta) d \eta$. Then we have that: $$ \begin{aligned} \varphi^{\prime}(t) & =\left[\Phi(t, \tau) \xi+\int_\tau^t \Phi(t, \tau) g(\eta) d \eta\right]^{\prime} \\ & =\frac{d}{d t} \Phi(t, \tau) \xi+\frac{d}{d t} \int_\tau^t \Phi(t, \tau) g(\eta) d \eta \\ & =\Phi^{\prime}(t, \tau) \xi+I g(t)+\int_\tau^t \Phi^{\prime}(t, \eta) g(\eta) d \eta \\ & =A(t) \Phi(t, \tau) \xi+g(t)+\int_\tau^t A(t) \Phi(t, \eta) g(\eta) d \eta \\ & =A(t)\left[\Phi(t, \tau) \xi+\int_\tau^t \Phi(t, \eta) g(\eta) d \eta\right]+g(t) \quad=A(t) \varphi(t)+g(t) \end{aligned} $$
. I found $\frac{\partial \boldsymbol{\Phi}\left(t, t_0\right)}{\partial t}=\mathbf{A}(t) \boldsymbol{\Phi}\left(t, t_0\right)$ with initial conditions $\boldsymbol{\Phi}\left(t_0, t_0\right)=I$ but I am not sure why.