I have an equation $f(n+1)=f(n) + (1 − f(n))\cdot \frac{1}{2+}\cdot\frac{2}{3+}\cdot\frac{6}{7+}$ , $f(1)=\frac{2}{7}$. I can get a solution using WolframAlpha ($f(n)=\frac{n(n+7)}{2(n+1)(n+6)}$ ), but I wonder if it is solved analytically. In the materials I found, only simple cases with constant coefficients are described, or equations where everything conveniently simplifies. However, I can't seem to manage this here. I tried to find a generating function, but nothing worked out due to the arrangement of the coefficients. I would be grateful if someone could explain how to approach such equations or recommend suitable articles that describe this.
Upd:
Let $f(n)$ be denoted by $a_{n}$.
Then $a_{1} = \frac{2}{7}$.
Next, we solve the recurrence relation:
$ a_{n+1} = a_{n} + (1 - a_{n}) \cdot \frac{1}{2 + n} \cdot \frac{2}{3 + n} \cdot \frac{6}{7 + n} $
Let $ g_{n} = \frac{1}{2 + n} \cdot \frac{2}{3 + n} \cdot \frac{6}{7 + n} $.
Then:
$ a_{n+1} = a_{n} + (1 - a_{n}) \cdot g_{n} $
$ a_{n+1} = a_{n} \cdot (1 - g_{n}) + g_{n} $
Let $ f_{n} = 1 - g_{n} $.
We get:
$ a_{n+1} - f_{n}a_{n} = g_{n} $
$ \frac{a_{n+1}}{\prod_{k = 0}^{n} f_{k}} - \frac{a_{n}}{\prod_{k = 0}^{n-1} f_{k}} = \frac{g_{n}}{\prod_{k = 0}^{n} f_{k}} $
Let $ A_{n} = \frac{a_{n}}{\prod_{k = 0}^{n-1} f_{k}} $.
Then:
$ A_{n+1} - A_{n} = \frac{g_{n}}{\prod_{k = 0}^{n} f_{k}} $
Consider the sum:
$ \sum_{k=0}^{n-1} (A_{k+1} - A_{k}) = A_{n} - A_{0} = \sum_{k=0}^{n-1} \frac{g_{k}}{\prod_{m = 0}^{k} f_{m}} $
In our case, $ A_{0} = 0 $.
Then: $ \frac{a_{n}}{\prod_{k = 0}^{n-1} f_{k}} = \sum_{m=0}^{n-1} \frac{g_{m}}{\prod_{k = 0}^{m} f_{k}} $
Thus:
$ a_{n} = \left( \prod_{k = 0}^{n-1} f_{k} \right) \cdot \left( \sum_{m=0}^{n-1} \frac{g_{m}}{\prod_{k = 0}^{m} f_{k}} \right) $
Consider products of the form: $ \prod_{k = 0}^{n} f_{k} $
$ \prod_{k = 0}^{n} f_{k} = \prod_{k = 0}^{n} \left( 1 - \frac{1}{2 + k} \cdot \frac{2}{3 + k} \cdot \frac{6}{7 + k} \right) = \prod_{k = 0}^{n} \frac{(k+6)(k+5)(k+1)}{(k+2)(k+3)(k+7)} = \frac{(n+4)(n+5)}{2(n+2)(n+7)} $
Then:
$a_{n} = \frac{(n+3)(n+4)}{2(n+1)(n+6)} \cdot \sum_{m=0}^{n-1} \frac{\frac{12}{(2+m)(3+m)(7+m)}}{\frac{(m+4)(m+5)}{2(m+2)(m+7)}} = \frac{(n+3)(n+4)}{2(n+1)(n+6)} \cdot \sum_{m=0}^{n-1} \frac{24}{(m+3)(m+4)(m+5)} = \frac{(n+3)(n+4)}{2(n+1)(n+6)} \cdot \sum_{m=0}^{n-1} \left( \frac{12}{m+3} - \frac{24}{m+4} + \frac{12}{m+5} \right) = \frac{(n+3)(n+4)}{2(n+1)(n+6)} \cdot \frac{n(n+7)}{(n+3)(n+4)} = \frac{n(n+7)}{2(n+1)(n+6)} $
Of course, I got the answer, but what should be done in the general case if it is not possible to collapse sums and products using such a convenient method?