Consider this matrix :
$$A = \left( \begin{matrix} 1 & - 2 & 0 & \cdots & 0 & 0 & - 2 \\ 2 & 1 & - 2 & \cdots & 0 & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & - 2 & 0 \\ 0 & 0 & 0 & \cdots & 2 & 1 & - 2 \\ 2 & 0 & 0 & \cdots & 0 & 2 & 1 \end{matrix}\right)_{2023\times 2023}$$
How to prove $A$ is invertible?
My attempt:
Consider this matrix :
$$B=\left( \begin{matrix}
1 & - 2 & \cdots & 0 & 0 & 0 \\
2 & 1 & \cdots & 0 & 0 & 0
\\ \vdots & \vdots & & \vdots & \vdots & \vdots
\\ 0 & 0 & \cdots & 1 & - 2 & 0 \\
0 & 0 & \cdots & 2 & 1 & - 2 \\
0 & 0 & \cdots & 0 & 2 & 1 \end{matrix}\right)$$
Inductively, we see $$\det B>0$$
Let $e=(1,0,\cdots,1)'$, then , using row elimination method , we get
$$A=\begin{pmatrix}1&-2e'\\
2e&B\end{pmatrix}$$
I could not see the $\det A$ is $\neq 0$ here ...
Help. Thanks.