This problem is from a great book:
$$\color{rgb(128,128,255)}{\text{Discovering Higher Mathematics}}\\\color{rgb(255,128,128)}{\text{Four habits of Highly Effective Mathematicians}}\\\text{By }\color{rgb(0,191,0)}{\text{Alan Levine}}$$
Find the remainder when $1^{99}+2^{99}+3^{99}+4^{99}+5^{99}$ is divided by $5$.
My Approach:
$1^{\text{any natural number}}\equiv1\pmod{10}$
Finding the units digit of powers of $2$: $2^1\equiv2\pmod{10}, 2^2\equiv4\pmod{10}, 2^3\equiv8\pmod{10}, 2^4\equiv6\pmod{10}$
This pattern will repeat for higher integer exponents. Now $99\equiv3\pmod{4}$, so $2^{99}\equiv2^3\equiv8\pmod{10}$
- Finding the units digit of powers of $3$: $3^1\equiv3\pmod{10}, 3^2\equiv9\pmod{10}, 3^3\equiv7\pmod{10}, 3^4\equiv1\pmod{10}$
This pattern will repeat for higher integer exponents. Now $99\equiv3\pmod{4}$, so $3^{99}\equiv3^3\equiv7\pmod{10}$
- Finding the units digit of powers of $4$: $4^1\equiv4\pmod{10}, 4^2\equiv6\pmod{10}, 4^3\equiv4\pmod{10}$
This pattern will repeat for higher integer exponents. Now $99\equiv0\pmod{3}$, so $4^{99}\equiv4^0\equiv1\pmod{10}$
- $5^{\text{any natural number}}\equiv5\pmod{10}$
Adding these: $1+8+7+1+5=22\equiv2\pmod{5}$
My final answer is $2$.
$\color{red}{\text{Question 1:}}$ Is my approach correct?
$\color{red}{\text{Question 2:}}$ Is there a faster way to solve this problem?
Your help would be appreciated. THANKS!
solution-verificationquestion to be on topic you must specify precisely which step in the proof you question, and why so. This site is not meant to be used as a proof checking machine. – Bill Dubuque Jun 27 '24 at 20:18WolframAlpha confirms this.
– PrincessEev Jun 27 '24 at 20:21