Notice the integrand can be rewritten as:
$$\pi x + \frac{S C' - C S'}{S^2 + C^2}
= \pi x + \frac{1}{2i}\left(\frac{C' - iS'}{C - iS} - \frac{C' + iS'}{C + iS}\right)
= \pi x + \frac{1}{2i} \log\left(\frac{C-iS}{C+iS}\right)'
$$
The integral is equal to
$$\lim_{x\to\infty} \left[\frac{\pi t^2}{2} + \frac{1}{2i}\log\left(\frac{C(t)-iS(t)}{C(t)+iS(t)}\right)\right]_0^x
=\lim_{x\to\infty} \left(\frac{\pi x^2}{2} + \Im ( \log M(x) )\right)
$$
where $\displaystyle\quad M(x) = \frac{C(x)-iS(x)}{C(0)-iS(0)}$.
Using
$$\int_0^{\infty} \cos \frac{\pi t^2}{2} dt = \int_0^{\infty} \sin \frac{\pi t^2}{2} dt = \frac12,$$
we can simplify $M(x)$ to
$$\begin{align}
\frac{\color{red}{-}\int_{x}^{\infty} e^{-i\frac{\pi}{2} t^2}dt}{\color{red}{-\frac12+\frac12 i}}
= & \sqrt{2}e^{i(\color{red}{\frac{\pi}{4}}-\color{blue}{\frac{\pi}{2}x^2})}\int_0^{\infty}
e^{-i(\frac{\pi}{2} t^2 + \pi x t)} dt\\
\sim &
\frac{\sqrt{2}}{\color{green}{i} \pi x} e^{i(\color{red}{\frac{\pi}{4}}-\color{blue}{\frac{\pi}{2}x^2})}( 1 + O(\frac{1}{x}) )
\quad\text{ for large } x.
\end{align}
$$
From this, we find the integral equals to
$$\lim_{x\to\infty} \left( \frac{\pi x^2}{2} + \color{red}{\frac{\pi}{4}}
- \color{green}{\frac{\pi}{2}} - \color{blue}{\frac{\pi x^2}{2}} + O(\frac{1}{x}) \right) = -\frac{\pi}{4}.$$