I tried integration by parts
$$\begin{aligned} \int_{-1}^{1}\sin^{-1}\left(x\right)\tan^{-1}\left(x\right)\mathop{\mathrm{d}x}&=2\int_{0}^{1}\sin^{-1}\left(x\right)\tan^{-1}\left(x\right)\mathop{\mathrm{d}x}\\ &=\left.2x\sin^{-1}\left(x\right)\tan^{-1}\left(x\right)\right|_{0}^{1}-2\int_{0}^{1}x\left(\frac{\sin^{-1}\left(x\right)}{1+x^{2}}+\frac{\tan^{-1}\left(x\right)}{\sqrt{1-x^{2}}}\right)\mathop{\mathrm{d}x}\\ &=\frac{\pi^{2}}{4}-2\left(\int_{0}^{1}\frac{x\sin^{-1}\left(x\right)}{1+x^{2}}\mathop{\mathrm{d}x}+\int_{0}^{1}\frac{x\tan^{-1}\left(x\right)}{\sqrt{1-x^{2}}}\mathop{\mathrm{d}x}\right)\\ &=\frac{\pi^{2}}{4}-2\left(I+J\right) \end{aligned}$$
Evaluting $J$ is relatively easy
$$\begin{aligned} J&=-\int_{0}^{1}\tan^{-1}\left(x\right)\mathop{\mathrm{d}{\sqrt{1-x^{2}}}}\\ &=-\left(\left.\tan^{-1}\left(x\right)\sqrt{1-x^{2}}\right|_{0}^{1}-\int_{0}^{1}\frac{\sqrt{1-x^{2}}}{1+x^{2}}\mathop{\mathrm{d}x}\right)\\ &=\int_{0}^{\frac{\pi}{2}}\frac{\cos^2\left(u\right)}{1+\sin^{2}\left(u\right)}\mathop{\mathrm{d}u}\qquad\left(x=\sin\left(u\right)\right)\\ &=\int_{0}^{\frac{\pi}{2}}\left(\frac{2}{1+\sin^2\left(u\right)}-1\right)\mathop{\mathrm{d}u}\\ &=2\int_{0}^{\frac{\pi}{2}}\frac{1}{\cos^2\left(u\right)+2\sin^2\left(u\right)}\mathop{\mathrm{d}u}-\int_{0}^{\frac{\pi}{2}}1\mathop{\mathrm{d}u}\\ &=\sqrt{2}\int_{0}^{\frac{\pi}{2}}\frac{\mathop{\mathrm{d}\left(\sqrt{2}\tan\left(u\right)\right)}}{1+\left(\sqrt{2}\tan\left(u\right)\right)^{2}}-\frac{\pi}{2}\\ &=\left.\sqrt{2}\tan^{-1}\left(\sqrt{2}\tan\left(u\right)\right)\right|_{0}^{\frac{\pi}{2}}-\frac{\pi}{2}\\ &=\frac{\sqrt{2}-1}{2}\pi \end{aligned}$$
However I'm stuck at evaluating $I$. How to evaluate this integral?
Thanks everyone, the final result is
$$\int_{-1}^{1}\sin^{-1}\left(x\right)\tan^{-1}\left(x\right)\mathop{\mathrm{d}x}=\boxed{\frac{\pi^{2}}{4}-\left(\sqrt{2}-1+\ln\left(4-2\sqrt{2}\right)\right)\pi}$$