Problem. Define $I_n=\int_0^\infty\frac{\operatorname du}{(1+u^2)^n}$. Prove that $(2n-1)I_n=2nI_{n+1}$.
I tried to integrate by parts two times (the second time in the "$\cdots$") \begin{align*} I_n&=\int_0^\infty\frac1{(1+u^2)^n}\cdot1\operatorname du=\left[\frac1{(1+u^2)^n}\cdot u\right]_0^\infty-\int_0^\infty\frac{-2nu}{(1+u^2)^{n+1}}\cdot u\operatorname du\\ &=0+\int_0^\infty\frac{2nu^2}{(1+u^2)^{n+1}}\operatorname du=n\int_0^\infty\frac{2u}{(1+u^2)^2}\cdot\frac u{(1+u^2)^{n-1}}\operatorname du\\ &=\cdots=nI_n-n(n-1)\int_0^\infty\frac{2u^2}{(1+u^2)^{n+1}}\operatorname du. \end{align*} The second time wasn't really meaningful as it just brought be to where I had been.