Actually, the closure of $L^\infty$ in $L^{p,\infty}$ is
$$
L^{p,\infty}_0:=\left\{ f:\lim_{t\to\infty}t^p\mu\{x:\lvert f(x)\rvert>t\}=0 \right\}.
$$
Indeed, if $f$ belongs to the closure of $L^\infty$ in $L^{p,\infty}$, for each $N$, there exists a function $f_N\in L^\infty$ such that
$\sup_{t>0}t^p\mu\{x:\lvert f(x)-f_N(x)\rvert>t\}<N^{-1}$. Then
$$
t^p\mu\{x:\lvert f(x)\rvert>t\}\leqslant t^p\mu\{x:\lvert f(x)-f_N(x)\rvert>t/2\}+t^p\mu\{x:\lvert f_N(x)\rvert>t/2\}\leqslant \frac{2^p}N+t^p\mu\{x:\lvert f_N(x)\rvert>t/2\}
$$
and since $f_N$ is bounded,
$$
\limsup_{t\to\infty}t^p\mu\{x:\lvert f(x)\rvert>t\}\leqslant \frac{2^p}N
$$
hence $f$ belongs to $L_0^{p,\infty}$.
Conversely, if $f$ belongs to $L_0^{p,\infty}$, then we can show that $f_N\colon x\mapsto f(x)\mathbf{1}_{\lvert f(x)\rvert\leqslant N}$ approximates $f$ with respect to the semi-norm
$$
\lVert g\rVert_{p,\infty}=\left(\sup_{t>0}t^p\mu\{x:\lvert g(x)\rvert>t\}\right)^{1/p},
$$
since
$$
\lVert f-f_N\rVert_{p,\infty}^p=\sup_{t>0}t^p\mu\{x:\lvert f(x)\rvert>\max\{t,N\}\}\leqslant \sup_{t\geqslant N}t^p\mu\{x:\lvert f(x)\rvert>t\}.
$$