You might want to employ the index notation and make use of the definition of the trace and partial derivative.
Using Einstein summation convention - implied summation over repeated indices - you may rewrite your initial trace as:
$$
\text{trace}\left(AXBX{C}^{T}\right)=a_{km}x_{ml}b_{lp}x_{pq}c^{T}_{qk}
$$
and then use the matrix derivative definition:
$$
\begin{array}{ll}
\frac{\partial}{\partial x_{ij}}\left(a_{km}x_{ml}b_{lp}x_{pq}c^{T}_{qk}\right)
&=&
\left(a_{km}\frac{\partial x_{ml}}{\partial x_{ij}}b_{lp}x_{pq}c^{T}_{qk}\right) + \left(a_{km}x_{ml}b_{lp}\frac{\partial x_{pq}}{\partial x_{ij}}c^{T}_{qk}\right) \\
&=&
\left(a_{km}\delta^{im}_{jl}b_{lp}x_{pq}c^{T}_{qk}\right) + \left(a_{km}x_{ml}b_{lp}\delta^{ip}_{jq}c^{T}_{qk}\right) \\
&=&
\left(a_{ki}b_{jp}x_{pq}c^{T}_{qk}\right) + \left(a_{km}x_{ml}b_{li}c^{T}_{jk}\right) \\
&=&
\left[\text{rearranging terms in products}\right] \\
&=&
\left(b_{jp}x_{pq}c^{T}_{qk}a_{ki}\right) + \left(c^{T}_{jk}a_{km}x_{ml}b_{li}\right)
\end{array}
$$
Notice here, that the resulting elements in both terms read $(j,i)$-th elements of the corresponding matrices, whereas we are seeking for $(i,j)$, as we take the derivative w.r.t. $x_{ij}$. To make the indices conform, you just need to transpose both terms.
\begin{equation} \frac {\partial AXB}{\partial X}=B^T⊗A\quad \text{hence for this problem}\rightarrow \frac{\partial,\left(AXBXC^T\right)}{\partial,XBX} = C ⊗ A \end{equation}
and regarding the second part $\frac{\partial,\left(XBX\right)}{\partial,X}$ in the matrix cookbook in (79)-(80) something similar can be found
– Dennis Marx Jun 13 '24 at 11:00