Let $A, C \in M_{2}(\mathbb{R})$ such that $A = AC-CA$. Prove that $A^{2}=0$
My attempt.
Note that $$ \operatorname{tr}(A) = \operatorname{tr}(AC)-\operatorname{tr}(CA) = \operatorname{tr}(AC)-\operatorname{tr}(AC) = 0. $$ So the characteristic polinomial of $A$ has the form $$ p_{A}(t)=t^{2}+(\operatorname {det}A) . $$ This gives, by the Cayley-Hamilton theorem $$ A^{2}+(\operatorname{det}A)I = 0, $$ that is $$ A^{2} = -(\operatorname{det}A)I. $$ Edit: By the equality above we have $\operatorname{tr}(A^{2})=-2\det A$, but $$ \operatorname{tr}(A^{2}) = \operatorname{tr}(AC-CA)(AC-CA)\\ = \operatorname{tr}((AC)^{2}-((AC)(CA))-((CA)(AC))+(CA)^{2})\\ = \operatorname{tr}((AC)^{2})-\operatorname{tr}((A(C^{2}A))-\operatorname{tr}(C(A^{2}C))+\operatorname{tr}((AC)^{2})\\ = \operatorname{tr}((AC)^{2})-\operatorname{tr}((A^{2}C^{2}))-\operatorname{tr}(A^{2}C^{2})+\operatorname{tr}((AC)^{2})\\ =0. $$ Thus the equation above implies that $\det A = 0$, giving $A^{2}=0$