I'm trying to derive the formula for the velocity of a particle in $ \mathbb R^2 $ in polar coordinates using the framework of differential geometry (charts, tangent vectors, etc.), just to familiarize with this language. (Next step will be to derive the formula for the acceleration by computing some Christoffel symbols).
Consider the manifold $ M = \mathbb R^2\setminus\{x\leqq 0\} $ (i.e., the plane minus the non-positive horizontal semiaxis).
On $ M $ we can put the standard (Cartesian) coordinates $ (x,y) $ or the familiar polar coordinates $ (r,\theta) $. Given $ p\in M $, denote with $ \partial/\partial x\rvert_p $, $ \partial/\partial y\rvert_p $ the basis of $ \mathrm T_pM $ induced by the Cartesian coordinates, and with $ \partial/\partial r\rvert_p $, $ \partial/\partial\theta\rvert_p $ the basis of $ \mathrm T_pM $ induced by the polar ones.
A simple calculation shows that $$ \left.\frac{\partial}{\partial r}\right\rvert_p = \cos\theta(p)\left.\frac{\partial}{\partial x}\right\rvert_p + \sin\theta(p)\left.\frac{\partial}{\partial y}\right\rvert_p\text{,}\qquad \left.\frac{\partial}{\partial \theta}\right\rvert_p = -\sin\theta(p)\left.\frac{\partial}{\partial x}\right\rvert_p + \cos\theta(p)\left.\frac{\partial}{\partial y}\right\rvert_p $$ i.e. that the change of basis matrix $ A_{\mathrm{Cartesian}\to\mathrm{Polar}}(p) $ for $ \mathrm T_pM $ is given by $$ A_{\mathrm{Cartesian}\to\mathrm{Polar}}(p) = R(\theta(p)) $$ where $ R(\theta(p)) $ is the rotation matrix in dimension $ 2 $. We can easily reverse the operation: $$ A_{\mathrm{Polar}\to\mathrm{Cartesian}}(p) = R(-\theta(p)) $$ since $ R(\theta(p))^{-1} = R(-\theta(p)) $.
Now, take a curve $ \gamma\colon \mathbb R\to M $. I want to express the velocity vector $ \dot\gamma(t)\in \mathrm T_{\gamma(t)}M $ of $ \gamma $ at the time $ t $ in polar coordinates, and derive the formula $$ \dot\gamma(t) = r(\gamma (t))^\prime \left.\frac{\partial}{\partial r}\right\rvert_{\gamma(t)} + r(\gamma(t))\theta(\gamma(t))^\prime \left.\frac{\partial}{\partial \theta}\right\rvert_{\gamma(t)}\label{formula}\tag{$ * $} $$ usually seen in freshman Mechanics textbooks. If I'm not mistaken, I can proceed like this. I'll put $ p = \gamma(t) $ in the following.
I can write $$ \dot\gamma(t) = \dot\gamma^1(t)\left.\frac{\partial}{\partial x}\right\rvert_p + \dot\gamma^2(t)\left.\frac{\partial}{\partial y}\right\rvert_p = v^1\left.\frac{\partial}{\partial r}\right\rvert_p + v^2\left.\frac{\partial}{\partial\theta}\right\rvert_p $$ where $ \dot\gamma^i(t) $ is just the derivative of the $ i $-th component of $ \gamma $ seen as a curve in $ \mathbb R^2 $, and at this point I have two ways of calculating the $ v^i $s.
I can go on like in $$ v^i = \dot{\tilde\gamma}(t) $$ where $ \tilde\gamma^i(t) = (r,\theta)\circ \gamma(t) $ and $ (r,\theta)\colon M\to \left]0,+\infty\right[\times \left]-\pi,\pi\right[ $ is the polar chart.
Or I can just do a change of coordinates like in $$ \begin{bmatrix} v^1\\ v^2 \end{bmatrix} = R(-\theta(p)) \begin{bmatrix} \dot\gamma^1(t)\\ \dot\gamma^2(t) \end{bmatrix}\text{.} $$
My problem is that neither way gives me the desired result $ \eqref{formula} $.
Now, I don't know if it was clear from my question, but what I am really asking is how form the expression $$ \begin{aligned} \partial_x &= \cos\theta, \partial_r - \frac1r \sin\theta\ \partial_y &= \sin\theta, \partial_r + \frac1r\cos\theta \end{aligned} $$ we can derive eqn (*) I wrote on the original question.
– GeometriaDifferenziale Jun 09 '24 at 18:40