First, I calculated the integral with the result:
$$\int \frac{1}{x^{7}+1}dx = \frac{1}{7}e^{\frac{-6i\pi}{7}}\ln\lvert{x-e^{\frac{i\pi}{7}}}\rvert+ \frac{1}{7}e^{\frac{-4i\pi}{7}}\ln\lvert{x-e^{\frac{3i\pi}{7}}}\rvert+ \frac{1}{7}e^{\frac{-2i\pi}{7}}\ln\lvert{x-e^{\frac{5i\pi}{7}}}\rvert+ \frac{1}{7}\ln\lvert{x+1}\rvert+ \frac{1}{7}e^{\frac{2i\pi}{7}}\ln\lvert{x-e^{\frac{9i\pi}{7}}}\rvert+ \frac{1}{7}e^{\frac{4i\pi}{7}}\ln\lvert{x-e^{\frac{11i\pi}{7}}}\rvert+ \frac{1}{7}e^{\frac{6i\pi}{7}}\ln\lvert{x-e^{\frac{13i\pi}{7}}}\rvert+c$$
Then, I generalised two things from it in the following:
$$x^{k}+1= \prod_{n=1}^{k}(x-{e^{\frac{(2n-1)i\pi}{k}}})$$
$$\int\frac{1}{x^{k}+1}dx = \frac{1}{k}\sum_{n=1}^{k} {e^{\frac{-(2n-1)(k-1)i\pi}{k}}}\ln\lvert{x-e^{\frac{(2n-1)i\pi}{k}}}\rvert$$
For $k=5$, I got:
$$\int \frac{1}{x^{5}+1}dx = \frac{1}{5}e^{\frac{-4i\pi}{5}}\ln\lvert{x-e^{\frac{i\pi}{5}}}\rvert+ \frac{1}{5}e^{\frac{-2i\pi}{5}}\ln\lvert{x-e^{\frac{3i\pi}{5}}}\rvert+\frac{1}{5}\ln\lvert{x+1}\rvert+\frac{1}{5}e^{\frac{2i\pi}{5}}\ln\lvert{x-e^{\frac{-3i\pi}{5}}}\rvert+ \frac{1}{5}e^{\frac{4i\pi}{5}}\ln\lvert{x-e^{\frac{-i\pi}{5}}}\rvert+c$$
Now my question: Is this all true? If so, how can I prove it, or is this enough? I'm really stuck. Thank you very much!