Using combinatorial classes as in Analytic Combinatorics
by Flajolet and Sedgewick, we have the following class
$\mathcal{V}$ of vectors drawn from $[n]$ where each value
occurs at least once
$$\def\textsc#1{\dosc#1\csod}
\def\dosc#1#2\csod{{\rm #1{\small #2}}}
\mathcal{V} = \textsc{SEQ}_{=n}(\textsc{SET}_{\ge 1}(\mathcal{Z})).$$
This gives the EGF
$$F(z) = (\exp(z)-1)^n.$$
In particular the count of these vectors is
$$\ell! [z^\ell] (\exp(z)-1)^n
= n! {\ell \brace n}.$$
Now mark singletons to get
$$\mathcal{V} =
\textsc{SEQ}_{=n}(\mathcal{U}\times \textsc{SET}_{=1}(\mathcal{Z}) +
\textsc{SET}_{\ge 2}(\mathcal{Z})).$$
We get the bivariate GF
$$Q(z,u) = (\exp(z)-z-1+uz)^n.$$
For the count of singletons we find the EGF
$$\left. \frac{\partial}{\partial u} Q(z,u) \right|_{u=1}
= nz (\exp(z)-1)^{n-1}.$$
Extract the coefficient on $z^\ell$
$$\ell! [z^\ell] n z (\exp(z)-1)^{n-1}
= \ell (\ell-1)! [z^{\ell-1}] n! \frac{1}{(n-1)!} (\exp(z)-1)^{n-1}
\\ = \ell \times n! {\ell-1\brace n-1}.$$
It follows that the expectation is
$$\bbox[5px,border:2px solid #00A000]{
\mathrm{E}[S] = \ell {\ell-1\brace n-1} {\ell\brace n}^{-1}.}$$
Using the asymptotic
$${\ell\brace n} \underset{\ell\rightarrow\infty}{\sim}
\frac{n^\ell}{n!}$$
we get with the pair of Stirling numbers
$$\ell \frac{(n-1)^{\ell-1}}{(n-1)!}
\frac{n!}{n^\ell}$$
which means that
$$\bbox[5px,border:2px solid #00A000]{
\mathrm{E}[S] \sim \ell
\left(1-\frac{1}{n}\right)^{\ell-1}.}$$
We can in fact compute the $r$th factorial moment by differentiating
$Q(z,u)$ $r$ times. We get
$$\ell! [z^\ell] n(n-1)\cdots(n-(r-1)) z^r (\exp(z)-1)^{n-r}
\\ = \ell(\ell-1)\cdots (\ell-(r-1)) (\ell-r)!
n! [z^{\ell-r}] \frac{(\exp(z)-1)^{n-r}}{(n-r)!}
\\ = r! {\ell\choose r} n! {\ell-r\brace n-r}.$$
This means that
$$\bbox[5px,border:2px solid #00A000]{
\mathrm{E}[S(S-1)\cdots (S-(r-1))]
= r! {\ell\choose r} {\ell-r\brace n-r} {\ell\brace n}^{-1}.}$$
As a sanity check $S$ is of course at most $n$, when $r\gt
n$ we thus get zero for the moment in question which agrees
with the first Stirling number. When $r=n$ we get zero when
$\ell\gt r$ which is $\ell\gt n$ and indeed the number of
singletons is at most $n-1$ in that case which gives zero
for the moment. When $r=n$ and $\ell=r$ we get $n!$
contributing vectors (only contribution is when $S=n$ so we
permute the $n$ unique values) with the statistic equal to
$n!$ which is indeed $n!{n\choose n}n!{n-r\brace n-r},$
giving $n!$ as the value of the moment.