On another forum I used Poisson's summation formula to obtain:
\begin{align*}
\sum_{n=-\infty}^\infty e^{-(x-2n)^2} = \frac{\sqrt{\pi}}{2} + \sqrt{\pi} \sum_{m=1}^\infty e^{-m^2 \pi^2 / 4} \cos \pi m x .
\end{align*}
Details:
First write:
\begin{align*}
\sum_{n=-\infty}^\infty e^{-(x-2n)^2} = \sum_{n=-\infty}^\infty e^{-(n-x/2)^2 4}
\end{align*}
which is periodic with period 1 in $x/2$. Poisson's summation formula:
\begin{align*}
\sum_{n=-\infty}^\infty F(n+t) & = \sum_{m=-\infty}^\infty e^{2 \pi i m t} \int_0^1 e^{-2 \pi i m s} \sum_{n=-\infty}^\infty F(n+s) ds
\nonumber \\
& = \sum_{m=-\infty}^\infty e^{2 \pi i m t} \sum_{n=-\infty}^\infty \int_0^1 e^{-2 \pi i m s} F(n+s) ds
\nonumber \\
& = \sum_{m=-\infty}^\infty e^{2 \pi i m t} \sum_{n=-\infty}^\infty \int_n^{n+1} F(s) e^{-2 \pi i m s} ds
\nonumber \\
& = \sum_{m=-\infty}^\infty e^{2 \pi i m t} \int_{-\infty}^\infty F(s) e^{-2 \pi i m s} ds
\nonumber \\
& = \sum_{m=-\infty}^\infty \tilde{F} (2 \pi m) e^{2 \pi i m t}
\end{align*}
where
\begin{align*}
\tilde{F} (y) = \int_{-\infty}^\infty F(s) e^{-i y s} ds
\end{align*}
Put $F(s)=e^{-s^2 4}$, then
\begin{align*}
\tilde{F} (y) & = \int_{-\infty}^\infty e^{-s^2 4} e^{-i y s} ds = e^{-y^2 / 16} \frac{1}{2} \sqrt{\pi} .
\end{align*}
So that
\begin{align*}
\sum_{n=-\infty}^\infty e^{-(x-2n)^2} & = \frac{\sqrt{\pi}}{2} \sum_{m=-\infty}^\infty e^{-(2 \pi m)^2 / 16}e^{2 \pi i m (-x/2)}
\nonumber \\
& = \frac{\sqrt{\pi}}{2} + \sqrt{\pi} \sum_{m=1}^\infty e^{-m^2 \pi^2 / 4} \cos \pi m x .
\end{align*}